Gianluca Alimonti

LCWS2000, Fermilab, Oct 25

Pixel detector R&D @UH

- 3D sensor development
 - Good timing
 - Low depletion voltage
 - Active edge
- Small footprint electronics
 - 40X60 μm or 50X50 μm
- Bump bonding
 - IR inspection of bonded chips

Enabling Technology

•Can now etch deep, nearvertical holes with plasma technology @STS

•With low pressure and moderate temperature process, a conformal coat of polysilicon is formed

•Dopant gasses can be added to the silane and make p⁺ and n⁺ doped polysilicon

•Heating drives the dopants into the surrounding silicon forming the p-n junction

Detector Development

Good timing!

Reduction of distance between electrodes:

- Reduction of drift time
- Reduction of depletion voltage

Detector Results sensitivity

- Charge sensitive amp, 1 µsec shaping time
- "Strip detector" with 14 P-type electrodes tied
- 200 micron pitch strip to strip, 100 micron between electrodes within a strip

Detector Results

Reasonable leakage current and

Low depletion voltage: 5-10 V LEAKAGE CURRENT

Radiation Tests

FOR 1 x 10¹⁴ 55 MeV PROTONS/CM²

Active edge

Sensitive up to very edge, no dead area

- •Fusion bond to support wafer
- •Plasma etch peripheral trench
- •Diffuse dopant into exposed single crystal silicon
- •Deposit poly, oxide, etc...
- •Contact edge with aluminum

Devices behave as diodes with low leakage current

- Signal plateau at expected voltage
- Sensitive area extends to trench edge

Active edge IR test

IR peak at 820 nm with full width of 30 μ m

Isolated P electrode N-trench v-sean v-sean x-sean

The FWHM of the Y scan is 73 microns, compatible with the 75 microns pitch

The FWHM of X scan is 287 microns, close to the 290 microns spacing between two N-trenches

-Unintentional field-oxide transistor is shown by the decreasing of collected signal from the region between 30 and 100 μm

- From 100µm sensor and small Ci, can get a respectably large signal of about 60mV
- Low power comparator convert in "quiet" environment
- After encoding, data ripped out at maximum speed
 - Decent performance w/o pre-amp
 - Comparator powering only during encoding
 - 5-bit Wilkinson encoding takes 40µs
 - After encoding, fast data transfer out in 160µs

Expected Performance

• Results for 100µm thick sensor

XTEST2 Initial Prototype

To test feasibility, a prototype (XTEST2) was fabricated in HP 0.5 μ m; going to .25 μ m technology it is expected to fit in 50X50 μ m (or 40X60 μ m)

XTEST2 Performance Results

Success:

Failures:

•Comparator works

•Gray code counter

•Radiation tolerance

•Output lines

XTEST2 Radiation Results

Redesigns:

- •Better power distribution
- •Replace probe pads
- •Clean up wiring

- Radiation hardness
 - Quite adequate total dose performance

Interconnect Concerns

• Excellent SNR and Timing, but...

Assumption all charge is collected is FALSE!

- For faster trigger time, even 100fF stray C would yield to SNR about 20.
- For larger stray C the degradation may become unacceptable.
- Test bumps for real measurement (evaluation from first principles is quite complex)

Bump Bonding Tests

Bonded both 300µm and 100µm thick devices @ AIT Hong Kong.

UBM problems.

Images of unbonded chips

Optical

SEM

IR images

Can examine aluminum traces and In bumps while sandwiched between a pair of bonded chips

IR analysis 50X100µm pitch bumps Good!

...smashed...

Misaligned...

...and misaligned!

Bump bonding Results

- •No open bump-to-bump connection observed out of 21120
- About 20% of chips bad (learning chips...)
- •Using final "recipe", the remaining 80% had a rate of inter row shorts of about one in a thousand

Conclusions

- First 3D detectors successfully fabricated
 - Reasonable leakage current: 1/4-1 nA/mm³ at room temperature
 - X-rays and gamma signals have been observed
 - Deplete at low voltages (5-10V) as expected
 - Wide plateau for infrared microbeam signals
 - Preliminary look at active edges promising
- Results from XTEST2 promising:
 - Have established Rad Hard process
 - Developing experience at handling interconnect issues
 - New prototype design submitted by end 2000
- Achieved an acceptable yield bump bonding 100-micron thick sensor and read out chip
- First prototype system mid next year