The LEP Spectrometer Project

Michael D. Hildreth, University of Notre Dame LCWS 2000, FNAL, October 26, 2000

Thanks to the members of the LEP Spectrometer Working Group:

R. Assman, E. Barbero-Soto, C. Bovet, W. Coosemans, D. Cornuet,

B. Dehning, G. De Rijk, G.P. Ferri, R. Genand, A. Hidalgo, M. Hildreth,

N. Hilleret, W. Kalbreier, P. LeClere, J. Matheson, G. Mugnai,

Y. Muttoni, S. Meyers, J. Palacios, R. Perret, M. Placidi, J. Prochnow,

F. Roncarolo, M. Sassowsky, E. Torrence, R. Valbuena, G. Vismara,

L. Vos, J. Wenninger, W. Weterings, G. Wilkinson

Motivation/Overview

Precision measurement of W mass is a primary goal of LEP2:

Experimental Precision will reach 30-35 MeV

- Energy Error should not the be dominant systematic
- Extrapolation of energy scale using RDP+Magnetic information gives an error of 20-25 MeV
- \Rightarrow Direct Measurement of Physics Beam Energy Needed

Goal: Relative Energy Measurement to 1×10^{-4}

Spectrometer cross-calibrated with RDP at lower energy

Ramp LEP ring (and dipole) to Physics Energy

• Direct measurement of E_{beam} in ratio of bend angles

The LEP Spectrometer

Near LEP IP3, We installed (in 1999)

Available space dictated $\theta = 4.8$ mrad, Lever arm \sim 10 m:

BPM Resolution in bending plane $\Rightarrow \delta x_{\rm BPM} \sim 1 \mu {\rm m}$

Stability required for a few hours only

BUT must be stable as machine energy doubles

Beam Pickups

- Mechanical and Thermal stability
- Precise and Stable Electronics

Capacitive Wire Position Monitors

- Independent Position Monitoring
- Limit Rotations of Triplet Arms

Magnet System

- Well-Behaved Steel Dipole
- NMR Instrumentation
- Precision Field Map

BPM Assembly

Mechanical Stability

Wire system provides independent monitor of BPM positions:

Stretched Wire System

Wires - X Resolutions

Horizontal position resolution ~ 200 nm without beam!

Vertical resolution even better...

Fun with Synchrotron Radiation

JUMPS in wire position seen, correlated with ramp of LEP:

Michael D. Hildreth

October 26, 2000

BPM Stability

Electronics Sensitivity to Temperature:

Now regulated to better than 0.1° C

Other Concerns studied:

effects of RF frequency shifts on response effects of varying beam current

effects of beam size and offset

BPM Stability

 \Rightarrow β -variation across spectrometer \Rightarrow alignment tolerance:

Michael D. Hildreth

October 26, 2000

BPM Gain Calibration with Beam

During measurements, **Bumps** put across each BPM triplet

Linear Extrapolation gives relative gain of each pickup

Triplet residual:

October 26, 2000

Strategy: Measure $\oint B \cdot d\ell$ as $f(B_{\text{Ref}})$, using NMR Probe $(\frac{\delta B}{B} \sim 10^{-6})$, Hall Probes $(\frac{\delta B}{B} \sim 10^{-4})$ (Ends)

Michael D. Hildreth

Magnet Mapping Campaign

Hundreds of maps carried out

- Different Temperatures, Field levels, Ramp speeds, magnet insulation, rotating coils, phases of the moon, etc.
- 3-D maps of field uniformity over aperture
- Also, maps in beampipe, in tunnel, using the Mole:

Preliminary Results:

Michael D. Hildreth

Preliminary 1999 Results

Comparison with Resonant Depolarisation Energy:

Comparison with LEP2 Energy Model at Physics Energy:

Conclusions/Projections

- Technial Tolerances Met in Stable Situations:
- **Markov Independent Temperature Regulation established**
- Wire sensors monitor position to 100 nm
- → BPMs good to 200-300 nm
- ***** Relative Magnetic field known to better than 3×10^{-5}
- ★ Beam-based BPM alignment method developed
- \Rightarrow First direct measurement of LEP2 Physics Energy in 1999

2000 Running redux: Lots more data and some anomalies

- New BPM movers for horizontal position adjustment
- Better shielding
- Better understanding of electronics configuration
- Unexplained gain drifts on some of the BPMs
 - \rightarrow *after* intercalibration
 - \rightarrow could be synchrotron radiation
- Effects of ambient magnetic field
 - \rightarrow always monitored with flux gates
 - \rightarrow local vacuum pumps have magnetic elements
 - ightarrow magnet power supply cables along LEP wall
- Need to cross check RF model with two beam experiments