

DAФNE & KLOE A Status Report

P. Laurelli

INFN/LNF

ICFA Seminar

Fermilab, October 5, 1999

INDEX

№ DAΦNE

Design Strategy Achievements Present Status

& KLOE

Experimental requirements
Present Status

Short term program...

Physics at $a \phi$ - Factory

e+e- collider

 $\begin{cases} \sigma(\phi) \sim 3.2 \,\mu b \\ M_{\phi} \sim 1.02 \,\text{GeV} \\ \Gamma_{\phi} \sim 4.4 \,\text{MeV} \end{cases}$

Very clean environment

Pure monochromatic KK beams

- ① $\mathbf{p_K} = -\mathbf{p_K}$ (~110 MeV/c)

- Efficient tagging
- Interferometry

		%	28	28	
1.3%	2.5%	12.9%	34.3%	49.1%	Decays
ηγ	3π	ρπ	K_LK_S	K+K·	фД

Physics at $a \phi$ - Factory

At full Luminosity 5×10^{32} cm⁻² s⁻¹ in 1 Year

5	₹		
2.5×10^8 , 2.5×10^6	~106	$1.2x10^{10}$	8.5x10 ⁹
ባγ, η'γ	$f_0 \gamma$, $a_0 \gamma$	K+K·	K_LK_S

Measure all the relevant CP CPT violation parameters from INTERFEROMETRY and DOUBLE ratio

 \mathscr{M} Kaon form factors, K_s rare decay and K_s semileptonic asymmetry (never measured)

Radiative ϕ decay \rightarrow investigation of the f_0 , a_0 nature & precise determination of $BR(\phi \rightarrow \eta' \gamma)/BR(\phi \rightarrow \eta \gamma)$

DAФNE: Design strategy

 $\angle_{\text{DA}\Phi\text{NE}} = 5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

 $\mathcal{L}_{\text{VEPP-2M}} = 5 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

"conservative" single bunch

approach:

 \mathcal{L}_0 (single bunch) ~ $\mathcal{L}_{VEPP-2M}$

and large number of bunches

 $\Delta_{\text{DA}\Phi NE} = n_{\text{bunches}} \times \mathcal{E}$

5.3x10 ²² cm ⁻² s ⁻¹	Maximum stored current per ring
17.8msec	Longitudinal damping time
36 msec	Vertical betatron damping time
36 msec	Horizontal betatron damping time
	Synchrotron radiation loss per turn
0.02 mm rms	Vertical beam size at crossing
2.0 mm rms	Horizontal beam size at crossing
30 mm rms	Bunch length
10 mm	Vertical beam-beam tune shift per crossing
	Horizontal beam-beam tune shift per cross
20-30 mrad	Total crossing angle in the horizontal plane
0.045 m	Vertical beta function at crossing
	Horizontal beta function at crossing
	Coupling factor
0.01 mm mrad	Vertical emittance
1.0 mm mrad	Horizontal emittance
up to 368.25 MHz	Crossing frequency
up to 120	Number of bunches per ring
8.9x1010	Number of particles per bunch
0.51 GeV	Single beam energy

32.5 m

23.3 m

DAONE

DAФNE:Key Issues

With conservative single beam parameters and 5.2 A /beam DA

NE key issues are:

- (i) Beam-Beam effect, which limits luminosity Œ Touschek Effect that limits the lifetime
- (iii) Higher Order Modes damping (especially in the RF)
- (iii) Vacuum (especially in the interaction region)
- (:) Compensation of Detectors' Magnetic Fields

DADNE Milestones

DAONE

Milestones after November 1998

Shutdown

KLOE Installation, Finuda in the pit, Dear Installation

Resume beam operation, Machine tests

First collision in KLOE

Machine tune-up and Luminosity runs for KLOE

Nov. 24th 1998

Dec. 98 - Mar 99

March 27th 1999

April 14th 1999

May 6th - 18th 1999

DAФNE: Achievements

Before KLOE roll-in

Single Bunch Mode: Achieved ℓ [cm⁻²s⁻¹]= 1.5·10³⁰ with I = 20 mA/beam.

Multi-Bunch Mode: Achieved ℓ [cm⁻²s⁻¹] = 10³¹ with N_b=13 and I = 200 mA/beam. Currents of 500 mA/beam circulated (test of the feedback and RF systems)

uminosity in DAPNE

DAΦNE: Present Status

After KLOE roll-in:

 Large perturbation to the ring(s) optics brought in by the large Bdl = 2.4 Tm (beam rigidity Br = 1.7 Tm).

Compensation of Bdl trough "antisolenoids" and rotation of the inner quadrupole triplets.

Insertion of KLOE has diminished beam diagnostic on I.R.

DAΦNE I.P.

9

KLOE I.P. in DAPNE

Beam trajectories in KLOE I.R.

BEAM TRAJECTORIES IN THE KLOE I.R.

Coupling correction in KLOE

no yaezzon Guridron

First Stored e+ with KLOE Magnet ON: 45% Coupling! (March 30, 1999)

e+ beam after compensating the KLOE Magnet Field: 1.1% Coupling! (April 11, 1999)

DAΦNE: Present Status

the total integrated charge) limits the total current and bunch Moreover, vacuum in the rings (still improving as a function of number.

As a result:

Stable collisions achieved at L= 2 x10³⁰ cm⁻² s⁻¹ in multibunch

and luminosity lifetimes > 1 hour. mode with single bunch luminosity $L \sim 1 \div 2 \times 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$

Static vacuum in DAPNE

Dynamic vacuum in DAΦNE

Aug. 3, 1999 (itot = 400 mA)

Luminosity & Scan in DAФNЕ

DADNE: Present Status

- Problems with cryogenic plant in September
- Fixed by end of September
- MD restarted
- Going on with luminosity improvement

The KLOE Detector

KLOE

Typical e⁺e · general purpose detector ~5 m diameter & ~4 m length

Beryllium Beam pipe (radius >16 λ_s)

 Two Quadrupole triplets Calorimeters (32 PMs)

 Helium Drift Chamber (12,582 Sense Wires)

 Lead-Scintillating Fiber Calorimeter (4,880 PMs)

Superconducting Solenoid of 0.6 T

The Electromagnetic Calorimeter

Requirements

- Determine the vertex of K_{LS} neutral decays with an accuracy of **few mm**
- Have an high discriminating power for the decays $K^0 \rightarrow 2\pi^0$ and $K^0 \rightarrow 3\pi^0$
- ③ Provide a fast and unbiased First Level Trigger
- Possibly provide useful information for particle identification

Solution

Fine sampling lead/scintillating fibers calorimeter

Energy sampling fraction: 13 %

- Good energy resolution (~5% / √ E (GeV))
- Fully efficient in the range 20-300 MeV
- Excellent time resolution (~70ps / √ E (GeV))
- Determination of γ conversion point with ~1cm accuracy
- Hermetic (rejection of $\sim 10^{-4}$ on $K_L \to 6\gamma$)
- Fast triggering response to suppress the 20 KHertz Bhabha rate

The Electromagnetic Calorimeter

The Drift Chamber

Requirements

- ① High and uniform track reconstruction efficiency
- ② Determine the $K_{L,S}$ vertex with an accuracy of 200 μ m x 1mm
- ③ Good momentum resolution (δp/p~ 0.5%) for low momentum tracks
- 4 Transparent to low energy γ (down to 20 MeV) and K_{LS} regeneration

Solution

- High homogeneity, isotropy, large volume ($\phi \sim 4$ m, $L \sim 3.3$ m, 52140 wires).
- All Stereo layers with constant $\delta_{stereo\ drop} = 1.5\ cm$, $\varepsilon = \pm (60 + 150)\ mrad$
- 12 layers of inner 2x2 cm² cells ⊕ 46 layers of outer 3x3 cm² cells
- Helium (90%He-10%i $C_{\downarrow}H_{10}$) gas mixture
- Al(Ag) 80 μ m field wires, W(Au) 25 μ m sense wires, X₀(gas+wires)=900 m
- Very thin walls: mechanical structure entirely in C-fiber/epoxy ($\leq 0.1 \text{ X}_0$)

The Drift Chamber

Present Status

- Magnet fully operated at the nominal field
- very few dead/hot channel (<0.1%) very few dead channel Drift chamber calibration completed, Calorimeter equalized in Energy and Time, even with with circulating beams low noise down to low thresholds (4 mV)
- \mathbb{C} final trigger configuration successfully tested
- DAQ operated up 10 KHz and 10 Mb/s
- Started to take and analyze first data

Present Status

After a period of parasitic running, we started on July 30 our first period of "continuous" data taking.

So far we have integrated a luminosity of ~ 250 nb⁻¹

Collected Luminosity in KLOE

Collected statistics from KLOE

The Electromagnetic Calorimeter: Energy Calib

- ① Iterative Equalization of PM response; using MIP

Electromagnetic Calorimeter: Time Resolution

(T1,L1)

trough-going muons (iterative procedure). Time calibration using residuals of

corresponding to: $\sigma(t) \sim 60 \text{ ps/}\sqrt{E(1\text{GeV})}$ for a MIP in a cell (\sim 32 MeV): $\sigma(t) \sim 350 \text{ ps}$

(T1-L1/c) -(T2-L2/c)

The Electromagnetic Calorimeter: Time per

The Electromagnetic Calorimeter: Recons

 m_{inv} $\eta \rightarrow \gamma \gamma$ 549.6 ± 43 MeV

ŝ

8

The Drift Chamber: calibration

The drift velocity is not saturated but depends on a sixth (at least...) power of the drift distance
The shape of the KLOE DC cells varies along the chamber axis and, additionally, on β and φ.

Autocalibration procedure to determine iteratively the space to time relation for different values of β and φ.(232 different s-t) Using cosmic ray and Bhabha we car calibrate our chamber in ~ 4 h

Chamber: Performances on Bha

The Drift Chamber: Performances on Bh

 π_0 invariant mass

Missing mass of the

 $K_L \rightarrow \pi^+\pi^-\pi^0$ vertex obtained from the charged tracks momenta

Drift Chamber & Calorimeter

Drift chamber & calorimeter can help to distinguish pion vs. electron

E/P

Neutral vs. Charged decay

 (x_n-x_c) cm

ngger.

Bhabha (20 kHz), machine bckg and cosmics ø decays (1 - few 10⁻³ on QP) and reject/scale Trigger must have high efficiency on (2.6kHz).

(The total rate should be keep down to 10 KHz)

- trigger levels based on
- ECAL energy deposit and (t₁ within 150 ns from ϕ)

DC hits multiplicity: (t₂ after 850 ns from t₁)

Trigger Rate at 5x10x2 cm-2 s-1

	7.5	Total
	~3.5	Background
Tor carroration	I	Cosmic
Ear calibration	_	large angle Bhabha
	~2.5	•
	(kHz)	Events
	rate	

Frigger Status

Hardware:

- final Trigger Organizer installed, debug is completed, fully operational and inserted in the DAQ system;
- trigger calorimeter sectors are working and are continuously monitored;
- DC trigger is being installed.
- Calorimeter trigger threshold settings.
- Monitoring tools.

Work in progress to study in detail the performances on the data

DAQ

DAQ handles ~ 23000 FEE channels on 2.5 kHz ϕ + 5 kHz bckg

- Signal conversion/digitization in 2 µs
- Bandwidth: ~ 50 Mbytes/s (5 Kbytes/ev.)
- Storage: 500 TBytes/y

12500 DLT, 40 Gbytes/DLT

Fully tested up to > 24 hours continuous running with peak rates of 10 kHz in multibunch mode.

Conclusions

With this first 250 nb⁻¹ of data KLOE is successfully testing:

- Detector performances
- Trigger and DAQ reliability
- Online monitoring
- Reconstruction and filtering procedures

Ready to take more data

Conclusions

With a Luminosity $\mathcal{L} = 5 \times 10^{31} \, \text{cm}^{-2} \text{s}^{-1}$

results: of data ($3 \times 10^8 \Phi$), which should allow the following physics DAΦNE should provide to KLOE in 1999/early 2000 100 pb⁻¹

- Measurement of \Re (ε'/ε) to 10^{-3} statistical accuracy;
- Meas. of $\mathcal{BR}(\phi \to f_0 \gamma \to \pi^0 \pi^0 \gamma)$ to ×5 better accuracy; ✓ Measurement of $K_{\lambda\beta}$ form factors;
- ✓ Confirmation of $\phi \rightarrow a_0 \gamma \rightarrow \eta \pi^0 \gamma$ and measurement of its \mathcal{BR} to \times 5 better accuracy.
- and take a lot of data Plans/hopes for the future: reach the project luminosity

