HIGGS + 2 JETS VIA GLUON FUSION

Carlo Oleari
(University of Wisconsin, Madison)

FNAL, 4th May 2001

In collaboration with:
V. Del Duca, W. Kilgore, C. Schmidt and D. Zeppenfeld

• Introduction
• Diagrams
 - tensor integrals
 - scalar integrals
 - colour structure
• Checks of the calculation
• Results
At values of $m_H > 100$ GeV, and at LHC energies, these are the two dominant processes for Higgs production: gg fusion and weak-boson fusion (WBF).

WBF, characterized by two forward-backward jets, is important for the extraction of Higgs couplings with gauge bosons.

Double real corrections to $gg \rightarrow H$ can “fake” WBF \iff

- accurate evaluation of these corrections
- investigate the “goodness” of the large m_t limit.
Diagrams

\[
\begin{align*}
q Q & \rightarrow q Q H & Q = q, q' \\
q g & \rightarrow q g H \\
g g & \rightarrow g g H \\
\text{plus crossed processes.}
\end{align*}
\]
Tensor integrals

All the scalar integrals (triangles, boxes and pentagons) are finite (the top mass m_t protects from divergences) \(\Rightarrow\) we work in $D = 4$ dimensions.

Due to the presence of the H vertex, we have for the tensor integrals

- triangles: at most two loop-momenta in the numerator $(k^\alpha k^\beta)$
- boxes: at most three loop-momenta in the numerator $(k^\alpha k^\beta k^\gamma)$
- pentagons: at most four loop-momenta in the numerator $(k^\alpha k^\beta k^\gamma k^\delta)$

For triangles and boxes we directly apply Passarino-Veltman formulae and we express the tensor integrals in the amplitudes as combination of scalar triangles and boxes.
Write the polarization vectors of the external gluons as a linear combination of external momenta. For the \(i \)-th gluon we have

\[
\epsilon_i = \epsilon_{i1} q_1 + \epsilon_{i2} q_2 + \epsilon_{i3} q_3 + \epsilon_{i4} q_4
\]

and contract the amplitudes. In this way, the tensor integrals depend only on scalar products of the type \(q_i \cdot q_j \) and \(k \cdot q_i \).

The \(\epsilon_{ij} \) coefficients are computed from the knowledge of the products \(\epsilon_i \cdot q_j \), once one assigns a definite polarization for the gluons.

All dot-products in the numerator of the tensor pentagons can be rewritten as a combination of propagators. For example:

\[
k \cdot q_2 = \frac{1}{2} \left\{ \left[(k + q_1 + q_2)^2 - m_i^2 \right] - \left[(k + q_1)^2 - m_i^2 \right] \right\} - q_1 \cdot q_2
\]

The tensor pentagons with 4 loop momenta in the numerator are written as a combination of

- tensor boxes with at most 3 loop momenta in the numerator \(\implies \) Passarino-Veltman tensor reduction formulae

- scalar pentagons
It can be shown that the generic scalar pentagon in \(D \) dimension, \(P^D \), can be written as

\[
P^D(q_i \cdot q_j, m_t) = c_0 (D - 4) P^{D+2}(q_i \cdot q_j, m_t) + \sum_{k=1}^{5} c_k B_k^D(q_i \cdot q_j, m_t)
\]

where \(B_k^D \) is the \(k \)-th box obtained by pinching the \(k \)-th propagator in the pentagon.

Since \(P^6(q_i \cdot q_j, m_t) \) is finite, we can safely put \(D = 4 \) and the scalar pentagon can be rewritten in terms of box integrals only, in 4 dimensions.
These two diagrams contribute

$$\text{Tr} \left(t^a_t^b_t^c_t^d\right) T + \text{Tr} \left(t^d_t^c_t^b_t^a\right) T$$

T is the same (Furry’s theorem).

4 gluons \Rightarrow 4! = 24 diagrams. But cyclic permutations give the same trace \Rightarrow 3! = 6 non-cyclic permutations.

When we sum the pairs of diagrams with the same “tensor” part, we have only three independent colour structures

\[
\begin{align*}
 c_1 &= \text{Tr} \left(t^a_t^b_t^c_t^d\right) + \text{Tr} \left(t^a_t^d_t^c_t^b\right) \\
 c_2 &= \text{Tr} \left(t^a_t^c_t^d_t^b\right) + \text{Tr} \left(t^a_t^b_t^d_t^c\right) \\
 c_3 &= \text{Tr} \left(t^a_t^d_t^b_t^c\right) + \text{Tr} \left(t^d_t^c_t^b_t^d\right)
\end{align*}
\]

Boxes and Triangles

They have two independent colour structures: $(c_1 - c_2)$ and $(c_1 - c_3)$.

\[
\begin{align*}
 c_1 - c_2 &= -\frac{1}{2} f^{abl} f^{cdl} \\
 c_3 - c_1 &= -\frac{1}{2} f^{adl} f^{bcl} \\
 c_2 - c_3 &= -\frac{1}{2} f^{alc} f^{dbl}
\end{align*}
\]
Gauge-invariance checks

We will concentrate on the $gg \rightarrow ggH$ processes, being the most articulate.

GAUGE CHECK: the amplitude **MUST** vanish if we set

$$\epsilon_i \text{ proportional to } q_i$$

Two gauge checks

- **QED-type** check. If we substitute all the gluons with photons, only the pentagon contributions survive in the $\gamma \gamma \rightarrow \gamma \gamma H$ process.

 The other contributions being zero, due to the presence of three and four gluon vertices

 \Longrightarrow the sum of the contributions coming from the tensor reduction of pentagon diagrams (with no colour structure) **MUST** vanish.

- **full QCD** check. When we add all the diagrams with all their colour structure.
Applied cuts

The cross section diverges for
- final-state partons become collinear with one another
- final-state partons become collinear with initial-state partons
- final-state partons become soft

- **Minimal set of cuts** to define $H + 2$ jets

\[p_{Tj} > 20 \text{ GeV} \quad |\eta_j| < 5 \quad R_{jj} > 0.6 \]

where R_{jj} describes the separation of the two partons in the pseudo-rapidity versus azimuthal angle plane.

\[R_{jj} = \sqrt{(\eta_{j1} - \eta_{j2})^2 + (\phi_{j1} - \phi_{j2})^2} \]

- **WBF set of cuts.** In addition to the previous ones, we impose

\[|\eta_{j1} - \eta_{j2}| > 4.2 \quad \eta_{j1} \cdot \eta_{j2} < 0 \quad m_{jj} > 600 \text{ GeV} \]

- the two tagging jets must be well separated, with 3 units of pseudo-rapidity between the jet definition cones
- they must reside in opposite detector hemispheres
- they must possess a large dijet invariant mass.

ALL THE RESULTS FOR LHC ENERGY
Total cross section: minimal cuts

$\sqrt{s} = 14$ TeV

- Solid $m_T=175$ GeV
- Dots $m_T=3$ TeV
- Dashes WBF

Bottom graph:
- Solid gg
- Dots qg
- Dashes qq

Carlo Oleari Higgs + 2 jets via gluon fusion
Total cross section: WBF cuts

solid $m_T=175$ GeV
dots $m_T=3$ TeV
dashes WBF

$m_T=175$ GeV
solid gg
dots qq
dashes qq

Carlo Oleari Higgs + 2 jets via gluon fusion
P_{Tj} (max): minimal cuts

$m_H = 120$ GeV

solid $m_T = 175$ GeV
dashes $m_T = 3$ TeV

$max_p_T[j]$ [fb/GeV]

$m_H = 120$ GeV

solid $m_T = 175$ GeV
dashes $m_T = 3$ TeV

P_{Tj} (max) [fb/GeV]

Carlo Oleari Higgs + 2 jets via gluon fusion
Azimuthal angle between jets ϕ_{jj}: WBF cuts

$m_H = 120$ GeV

solid $m_T = 175$ GeV
dots $m_T = 3$ TeV
dashes WBF