

VLHC Triggering (and Physics) at Extreme Luminosity

Physics:

 What is gained with 10³⁴-10³⁶ cm⁻²s⁻¹ luminosity at 40 or 200 TeV ?

Detector elements:

- Muon detection
- Tracking
- Calorimetry

Issues at extreme luminosity:

- Survival
- Performance
- Triggering
- Offline background rejection

High-L Motivation: Extra Mass Reach

From Uli Baur (+Atlas):

VLHC Pocket Guide channel LHC LHC 28 TeV 40 TeV 200 TeV $100 \text{ fb}^{-1} \quad 1 \text{ ab}^{-1} \quad 100 \text{ fb}^{-1} \quad 100 \text{ fb}^{-1}$ 100 fb^{-1} particle 2.5 \tilde{q}, \tilde{q} 5.5 > 10 W'Z'8.5 5.4 33 q^* 10 50 Λ comp. 75 130 $M_D (\delta = 2)$ 12 15 20 75

- large uncertainties
- not exhaustive
- all masses in TeV

High-L is good, usually not as good as high-E...

- 10xL=2xE works only at low L
- 10xL=sqrt(2)xE or less at high L
- For example, q* limit:

■ VLHC: 5σ reach for $f_s = 1$, $M_{\sigma^*} = \Lambda$:

But high-L is what all the Tevatron upgrades are about...

- Extra electric power operations cost
- Synchrotron radiation heating quenches superconducting magnets (but aperture stops)
- Catastrophic beam loss mitigation is a big deal (Drilling? Explosions?)
- Are there others?

Basic Parameters for Detectors

- Atlas and CMS are just starting to think about 10³⁵ cm⁻²s⁻¹
- Numbers of underlying events and tracks are proportional to luminosity, for LHC/VLHC cross-sections 80/130 mb, LHC/VLHC <P_T>=0.6/0.8 GeV:

CM Energy	Luminosity	Bunch Spacing	Underlying Events (average)	Underlying Charged Tracks per unit η (average)	Underlying E _T (total) in dEta*dPhi=0.25
14 TeV	10 ³⁴ cm ⁻² s ⁻¹	25 ns	20	~160	7.6 GeV
"	10 ³⁵ cm ⁻² s ⁻¹	12.5 ns	100-200	~800-1600	38-76 GeV
"	(Pb-Pb)	125 ns	(1)	~2500	?
200 TeV	10 ³⁴ cm ⁻² s ⁻¹	18 ns	24	~240	15 GeV
"	"	6 ns	8	~80	5 GeV
"	10 ³⁵ cm ⁻² s ⁻¹	18 ns	240	~2400	150 GeV
"	"	6 ns	80	~800	50 GeV
"	10 ³⁶ cm ⁻² s ⁻¹	18 ns	2400	~24000	1.5 TeV
"	"	6 ns	800	~8000	0.5 TeV

LHC Detector Effects at L=10³⁵

Atlas:

- Straw tube tracker is dead
- Remove pixels and part of silicon tracker (no b-jet I.D.)
- More forward shielding of muon system needed
- 12.5 ns bunch crossing incompatible with present trigger/DAQ
- "Fake" forward jets appear, cut used for WW fusion becomes useless (Liquid Argon)

CMS not documented yet, similar to Atlas but:

- Silicon outer tracker better off
- Maybe radiation damage to EM crystal calorimeter

Muon Detector Limits

- Radiation damage not an issue
- Muon bremmstrahlung not a big issue in central region
 - CMS works fine for P=5 TeV
- Trigger rates are an issue, can be addressed
 - 1 MHz real muons at LHC 10³⁴, scales up by L
 - CMS: trigger rate limit 100 kHz (10 kHz single muons)
 - Requires bend measurement, multiple scattering makes low-Pt muons appear straight in iron
 - Solutions: 1) optimize Pt algorithm, 2) increase DAQ rate, 3) devise high-Pt track trigger detector inside calorimeter
- S/N is an issue (hard to quantify, physics-dependent)
 - "High-level" cuts involve tracking Pt measurement, calorimeter and/or tracking isolation, additional jets, etc.

Muon Trigger Rates

CMS (Endcap)

- Muon stations between iron disks
- Bending in 4 muon stations combined
- Rates almost flat at very high-Pt due to multiple scattering
- Some optimization possible
- Would like another handle for higher luminosity

Rate (kHz) per unit rapidity

Tracker Limitations

- Silicon (e.g. CMS) is best current technology
- Radiation damage (from Incandela):
 - Sensors, not readout chips, limit to about 15 MRad
 - Pixels better but much harsher environment
 - Silicon improvements possible (e.g. thinner Si + low-noise electronics)

Silicon carbide (or maybe diamond) technologies might allow 100 MRad

Tracker Limitations

15 MRad points for 5 years running at (scaled):

Fig. 1.11: Radiation levels at selected radii in the CMS Tracker region. All values correspond to an integrated luminosity of 5×10^5 pb⁻¹. The error bars indicate only the statistics of the simulations. The neutron fluences include only the part of the spectrum above 100 keV.

Calorimeter Limitations

Technology choices (good +, bad -):

EM Technology	Radiation Damage	Speed	Precision	Cost
LAr (Atlas)	+	=	=	=
Crystals (CMS)	=	=	+	-
Sci Tiles (SDC)	=	+	=	=
Silicon sampling	+	=	=	
Quartz + Cerenkov (CMS HF)		+	-	?readout?

LHC at 10³⁴: highest radiation at EM shower maximum (10 years):

- •Barrel 1 Mrad (10⁴ Gray)
- •Endcap 14 Mrad (η=2.6)

CMS Endcap Hcal dose:

Calorimeter Limitations

Effect of pile-up at 200 TeV:

- Electron ID electrons and photons are "small"
 - typically $d\phi d\eta = (5cm/150cm)^2 = 10^{-3}$
 - Likelihood of additional particle is small in all luminosity choices
 - But "isolation" cut (better S/N) is greatly affected
- Jet ID may work above 1 TeV, below that may need "pattern recognition"
- High B-field is not a panacea
- Signal-to-noise and background rejection needs study for both electrons and jets

Luminosity	Bunch Spacing	Underlying Charged Tracks per unit η (average)	Underlying E _T (total) in dEta*dPhi=0.25
10 ³⁴ cm ⁻² s ⁻¹	18 ns	~240	15 GeV
"	6 ns	~80	5 GeV
10 ³⁵ cm ⁻² s ⁻¹	18 ns	~2400	150 GeV
и	6 ns	~800	50 GeV
10 ³⁶ cm ⁻² s ⁻¹	18 ns	~24000	1.5 TeV
"	6 ns	~8000	0.5 TeV

Calorimeter etc. S/N Question

- Rejecting all backgrounds is a BIG job made worse by high luminosity.
- CMS Level 1 trigger is understood, but L2 not entirely, much less L3 and offline cuts:

Start from: End result:

40 million events/sec

x10 million sec/year

x10 years

=4x10¹⁵ events

Search for Higgs particle
Look for data > background rate
~40 events excess

Each Higgs event is like a 1g needle in a 100 million metric ton haystack

Angular Extent and "Tag Jets"

WW Fusion
W W --> H

CMS calorimetry extends to $|\eta| = 5$ to cover the region of "tag jets".

Calorimeter Tridders

$L = 10^{33} cm^{-2} s^{-1}$ $L = 10^{34} cm^{-2} s^{-1}$ trigger threshold rate [kHz] threshold rate [kHz] indiv. indiv. | cumul. [GeV] cumul. [GeV] type $\Sigma \mathsf{E}_{\mathsf{t}}$ ~500 1.0 1.0 ~1000 0.5 0.5 $\mathsf{E}_t^{\,\mathsf{miss}}$ 100 2.1 2.8 200 1.3 1.7 12.3 18 10.3 32 6.8 8.3 е 12 1.5 13.1 18 1.5 9.5 ее 13.5 160 10.7 92 2.1 2.0 jj 11.6 65 1.6 13.9 106 2.2 jjj **52** 1.0 14.1 65 3.2 13.3 jjjj 45 0.7 14.2 **52** 3.0 14.3 14, 45 6.0 15.2 18, 92 1.4 14.9 еi 7.0 7.8 7.8 7.0 20 μ 2-4 0.5 7.3 4 1.6 9.2 μμ 2-4, 12 2.4 9.2 4, 13 5.5 14.4 μ e/γ 12.8 2-4, 8 5.2 μe_b 4, 80 14.4 0.3 14.3 μj 2-4, 40 4.2 $\mu \; \mathsf{E}_t{}^{\mathsf{miss}}$ 2-4, 80 0.2 14.4 4, 140 1.0 15.3 2-4, 200 0.7 14.4 4,500 0.2 15.3 $\mu \Sigma E_t$

olds

Findings

- Tracking can work at 10³⁵ and improvements may allow 10³⁶ (but not close to the beam line)
 - Continued rad-hard Silicon etc. R&D is important
- Muons can be identified at all luminosities
 - Central LHC muon detectors might handle 10³⁵ but not forward detectors (neutron backgrounds).
 - Triggering requires additional handles for 10³⁶ or fantastic DAQ system
 - Trigger coincidence with a track stub in front of calorimeter would be very useful (SDC had this)
- Calorimetry can survive the radiation in the central region but
 - Pile-up effect on electrons and jets needs simulation studies
 - Forget about missing-Et measurement
 - Forward tagging of jets (e.g. for WW scattering) is probably not in the cards

Opinions

- 10³⁵ should be planned for (extra physics reach) if at all possible.
- Even (some) detector capability for 10³⁶ may be forseen in 20 years, but extremely difficult.
- If accelerator can be designed for 10³⁵ or more, new non-LHC detector designs need to be created and understood.
- R&D can make headway on some detector issues.