in the light of future hadron colliders

Theory Overview
The Role of Future Hadron Colliders
The Need for Going Beyond SM
The Standard Model as It Is

VLHC Workshop, Fermilab, Oct. 16, 2003

Univ. of Wisconsin - Madison
Tao Han

in the light of future hadron colliders

Theory Overview
The Standard Model as a Low-Energy Effective Theory

\[SU(3) \]

QCD as the theory of strong interactions:

\[SY^O_3(3) \] QCD as the theory of strong interactions

as a low-energy effective theory

The Standard Model
EW theory and precision measurements:

Summer 2003

\[S_{\nu} \otimes (1) (2) \]

\[\eta \]
EW vacuum is absolute minimum

Triviality

Log_{10} \Lambda [\text{GeV}]

M_{H} [\text{GeV}/c^2]

Fig. from C. Quigg.
SM with a light H could be an effective theory to a $M_H \sim \Lambda \sim M_{Pl}$.

renormalizability...

non-trivial interactions;

a stable vacuum;

EW vacuum is absolute minimum.

fig. from C. Quigg.
The Need For Going Beyond SM
Due to quantum corrections, the Higgs mass is quadratically sensitive to the cut-off scale: $V_2 \sim V_2^2$.

The Large Hierarchy: $\frac{g_W^d}{M_W} - \frac{g_W}{M_W}$
Due to quantum corrections, the Higgs mass is quadratically sensitive to the cutoff scale: $V \sim (\Lambda)^2$.

If requiring less than 90% cancellation, $\Lambda \gtrsim \sqrt{3} \text{ TeV}$.

If $\Lambda \approx M_{\text{pl}}$, it would need a 10-30-level cancellation!

$M_W - \sqrt{\Lambda} \sim (\Lambda)^2$.

The Large Hierarchy:
On the one hand, the "naturalness" argument prefers $\Lambda_{\text{new}} \sim \sim 4\pi v$.

On the other hand, EW precision data indicate "decoupling" behavior $\Lambda_{\text{EW}} \sim 2 - 10 \text{ TeV}$.

* $\Lambda_{\text{flavor}} \sim 70 - 100 \text{ TeV}$.

Λ_{FCNC} (e.g. $K^0 - \bar{K}^0$ mixing etc.) constraints set $\Lambda_{\text{flavor}} \sim 70 - 100 \text{ TeV}$.

* EW precision data indicate "decoupling" behavior $\Lambda_{\text{EW}} \sim 2 - 10 \text{ TeV}$.

(based on generic strong dynamics, or generic MSSM †

$\Lambda_{\text{EW}} \sim 4\pi v$.

(based on generic strong dynamics, or generic MSSM †

† Chivukula, Evans, Simmons.

‡ Bagger, Feng, Polonsky, Zhang.

The little Hierarchy: $4\pi v - \Lambda_{\text{new}}$.
The Little Hierarchy: $4\pi v - V_{\text{new}}$

On the one hand, the "naturalness" argument prefers $\Lambda_{\text{ew}} < \sim 4\pi v$.

On the other hand, $\Lambda_{\text{ew}} > \sim 2 - 10 \text{ TeV}$.

- $V_{\text{ew}} > \sim 70 - 100 \text{ TeV}$ (based on generic strong dynamics, or generic MSSM).
- $\Lambda_{\text{EW precision}} > \sim 2 - 10 \text{ TeV}$ (based on generic dim-6 operators).
- $\Lambda_{\text{FCNC}} (K^0 - \bar{K}^0)$ mixing etc.) constraints set $\Lambda_{\text{flavor}} > \sim 70 - 100 \text{ TeV}$.
- $\Lambda_{\text{EW precision data indicate 'decoupling' behavior}}$.
- $\Lambda_{\text{EW}} > \sim 4 \pi v$.

Implies special structure or symmetry.

Barbieri, Feng, Polonsky, Zhang.
Chivukula, Evans, Simmons.

It implies a large scale, even we take $m_{\nu} \lesssim 10^{-6}$.

Taking $m_{\nu} \lesssim 1 \text{ eV}$, we get:

\begin{align*}
\text{The simplest (Majorana) neutrino mass term} = L^c (\frac{\nu}{\sqrt{2}}) H \nu \sim \sqrt{2} m_{\nu} \sim 10^{14} \text{ GeV}.
\end{align*}

Yet another Hierarchy: all way down to m_{ν}.
The smaller the fermion masses are, the larger the new physics scale is.

\[\nu \sim 10^{-6} \text{eV}. \]

It implies a large scale, even we take

\[\eta \lesssim \frac{\eta}{2} \eta \sim V \iff \text{Taking } m \nu \sim 1 \text{eV,} \]

\[T^\nu \left(T_\nu \right) \frac{V}{\eta} \eta \sim \frac{V}{\eta} \eta \sim \frac{V}{\eta} \eta \]

The simplest (Majorana) neutrino mass term

yet another hierarchy: all way down to \(m^\nu \)
Theoretical issues to understand:

- Vastly different mass scales:
 - EW gauge symmetry breaking;
 - Charged fermion masses;
 - Vastly different mass scales;

- Nontrivial fermion structure:
 - Three fermion generations;
 - Nearly (maximal) neutrino mixing;

- Unified description:
 - Yukawa couplings;
 - Gauge interactions;

- CP violation:
 - Quark small mixing; neutrino (nearly) maximal mixing;
Theoretical issues to understand:

- Vastly different mass scales: EW gauge symmetry breaking; charged fermion masses; neutrino masses.
- Nontrivial fermion structure: three fermion generations; CP violation.
- Nontrivial Yukawa couplings; gauge interactions; mass relations.
- Gravitational and cosmology connections: inflation; dark matter; dark energy; gravity and Planck scale physics; cosmology connections: (see M. Turner).

...
We are entering a "data-rich" era:
We are entering a “data-rich” era.

Electroweak precision constraints;
We are entering a "data-rich" era.

Electroweak precision constraints:

- \(\mu - e \) ...
- Electron/neutron EDMs;
-Muon \(g - 2 \);
- ...
We are entering a “data-rich” era:

Neutrino masses and mixing;

Muon $g - 2$, $\mu \rightarrow e\gamma$...

Electroweak precision constraints;

Neutron/electron EDMs;
We are entering a "data-rich" era:

Electroweak precision constraints;
muon $\mu \rightarrow e \gamma$...

Neutrino masses and mixing;

K/B rare decays and CP violation: $B \rightarrow X_{s} \phi, J/\psi K_{S}, \mu / K_{S}$;

Electroweak precision constraints;

We are entering a "data-rich" era:
We are entering a "data-rich" era:

Neutrino mass and mixing:
• $\mu \rightarrow e\gamma$

Electroweak precision constraints:
• K/\bar{B} rare decays and CP violation: $B \rightarrow X_s \gamma$, $J/\psi \phi/K^0_{S,S}$, μK^0_S

Nucleon stability:
We are entering a „data-rich“ era.

Dark matter constraint on stable particles (\text{MLSP});

Nucleon stability;

K/B rare decays and CP violation: B \rightarrow X_s \gamma, J/\psi K_S, \eta K_S, \phi K_S, \nu \mu K_S;

Neutrino masses and mixing;

Muon g − 2: \mu \rightarrow e\gamma; neutron/electron EDMs;

Electroweak precision constraints;
We are entering a “data-rich” era:

- Cosmology constraints on m_{r} and dark energy (Ω).
- Dark matter constraint on stable particles (WSP).
- Nucleon stability.
- K/B rare decays and CP violation: $B \to X^{s}\phi, \phi/K_{S}, J/\psi, \eta, \eta'$.
- Neutrino masses and mixing.
-Muon $g-2$: $\mu \to e\gamma$; neutron/electron EDMs.

Electroweak precision constraints:

Electroweak precision constraints:...
We are entering a “data-rich” era:

Electroweak precision constraints:
- \(\mu g - 2 \)
- \(\mu \rightarrow e\gamma \)

Neutrinomasses and mixing:
- Neutrino masses and mixing:
 -Muon 9 – 2; \(\nu_e \rightarrow \nu_x \)

Cosmology constraints on \(m_\nu \) and dark energy:
- Dark matter constraint on stable particles (WIMP)

Baryon stability:
- K/B rare decays and CP violation: \(B \leftrightarrow X_s , J/\psi K^0, \phi, K^0 S, mu S, \mu R \)

Neutrino studies:
- Higgs studies, comprehensive new particle searches...
- LHC: Higgs sector, top sector, new particle searches...
- Tevatron: EW, top sector, Higgs (?), new particle searches...

Other complementary experiments:
- non-colliders...
- LC: more on top sector, precision Higgs and light new particles...

Yet more to come:

Dark matter constraint on stable particles (WIMP):

Electroweak precision constraints:
- We are entering a “data-rich” era.
Only if the "soft-SUSY breaking"

\[M_W - M_W \]

weak scale SUSY stabilizes the hierarchy.

A natural cancellation mechanism:

\[\left(\frac{\lambda_{\text{SUSY}}}{\lambda_{\text{SUSY}}} \right) \ln \left(\frac{M_W}{f_X} \right) (M_W - \lambda_{\text{SUSY}}) \sim \frac{H_w}{z} \nabla \]

Our "theory bank"
Our theory bank

\(\Delta m^2_H \sim (M^2_{\text{SUSY}} - M^2_{\text{SM}}) \lambda^2 f_{16}^2 \pi^2 \ln \left(\frac{\Lambda}{M_{\text{SUSY}}}\right)\).

Weak scale SUSY stabilizes the hierarchy \(M_W - M_{\text{Pl}}\) only if the "soft-SUSY breaking"\(\rho^d W - M_W \) weak scale SUSY destabilizes the hierarchy

\[
\frac{\lambda_{\text{SUSY}} W}{v} \log \frac{\mu}{1 \text{ GeV}} \frac{1}{f} = \frac{\rho W - \lambda_{\text{SUSY}} W}{f} \sim H_{\text{w}} \Delta
\]

A natural cancellation mechanism:

(4) Weak-scale Supersymmetry:

Our "theory bank"
M.SUSY scenario: m_0, $m_{1/2}$, A, $\tan \beta$, and $\text{sign}(\mu)$

Merely (124?) unknown parameters, and most part of the para-space is inconsistent with observations.

What about M.SUSY?
The Little Hierarchy persists:

\[m_{\tilde{t}} \gtrsim \text{several TeV}, \text{or } m_{\tilde{q}} \gtrsim 4 \text{ TeV}. \]

• Inverted hierarchy: \[m_{\tilde{q}} \gtrsim \text{several TeV}, m_{\tilde{t}} \gtrsim 4 \text{ TeV}. \]

• "Focus point" scenario: \[f \text{ insensitive to } m_0, \text{ so that } m_{\tilde{l}}, m_{\tilde{q}} \gtrsim \text{several TeV}. \]

• Heavy \(m_0 \), so that \(\mu \) keeps the naturalness.

• New scale \(F \approx 5 - 20 \text{ TeV}, \text{ so that } m_{\tilde{t}} \gtrsim \text{several TeV}. \]

• "More minimal MSSM":

 Arkani-Hamed, Schmaltz, TH, Kribs, McElrath.

Feng, Matchev, Moroi
Bagger, Feng, Polonsky, Zhang

Cohen, Kaplan, Nelson.

References:

*Arkani-Hamed, Schmaltz, TH, Kribs, McElrath.
†Bagger, Feng, Polonsky, Zhang
‡Feng, Matchev, Moroi

"Inverted hierarchy" persists:

"Focus point" scenario:

\[m_0 > 4000 \text{ GeV}, \quad m_{1/2} > 1400 \text{ GeV}, \quad \tan \beta \gtrsim 45. \]

LHC may NOT guarantee a SUSY discovery.

\[0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2 \]

\[0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \quad 4 \quad 4.5 \quad 5 \quad 5.5 \]

LHC, ET

\[\text{m}_{\text{SUGRA}}: \tan \beta = 45, A_0 = 0, \mu < 0 \]

LEP2

\[\text{no REWSB} \]

\[m_\nu \text{ LEP2 limit} \]

\[a_{\mu} \times 10^{10} \]

\[\times 10^{10} \]

\[\text{Br}(b \rightarrow s \gamma) \times 10^4 \]

\[\text{Br}(B_s \rightarrow \mu^+ + \mu^-) \times 10^8 \]

\[0.094 < \Omega h^2 < 0.129 \]

\[f_{\sigma}(Z'_{\text{p}}) \times 10^{11} \text{ pb} \]

\[100 \quad 10 \quad 1 \quad 0.1 \quad 0.01 \quad 0.001 \]

\[\text{Stage 3} \]
There is the messenger sector to explore: $m_{\text{eff}}(\mathcal{O}) \sim \Phi W$. Squarks and gluinos are typically heavier.

Gauge mediation scenario: H, W, N, $\tan \beta$, and \mathcal{O}.

$\mathcal{O} \sim$ few $- 100$ TeV.
... In TC, EWSB by techni-fermion condensation:

In TC, EWSB by techni-fermion condensation:

Technicolor/Extended Technicolor (see K. Lane)

(2). Dynamical approach/Little Higgs:

•
The little hierarchy persists! New strong dynamics with multi scales?

\[\frac{V_t^{ETC}}{V_{\chi}^{ETC}} < \frac{1}{100 \text{ MeV}}. \]

And large \(m_q \) and \(\Lambda_{ETC} < 10^3 \text{ TeV} \), \(\Lambda_{ETC}^2 > 100 \text{ MeV} \).

Small FCNC: \(\sim 0 \) \(\langle \bar{Q}_L Q_R \rangle \) \(\sim \frac{1}{3} \).

It is phenomenologically difficult for generating

When generalizing to ETC to incorporate fermion masses,

\[\begin{align*}
\langle \bar{Q}_L Q_R \rangle & \sim 0 \\
\text{In TC, EWSB by techni-fermion condensation:} \\
\text{Technicolor/Extended Technicolor: (see K. Lane)}
\end{align*} \]

(B) Dynamical approach/little Higgs:
Topcolor special:

\[m_t \approx \frac{v}{\sqrt{2}} = 174 \text{ GeV}. \]

"Topcolor/Top-seesaw": Introducing an additional fermion pair \(\chi \), with a heavy state \(\chi \), and a SM \(t \) leads to a SM \(t \) and a heavy Higgs \(H \) with

\[m_H \sim 1 \text{ TeV}. \]

(2) Topcolor seesaw:

\[\left(\bar{\chi}^R_t \chi^L, \bar{\chi}^R_b \chi^L \right) \Rightarrow \text{EWSB and a heavy Higgs} \]

\[\sim 4 \text{ TeV}. \]

(1) Topcolor generates the condensation

\[\sim H \]

Introducing an additional fermion pair \(\chi \), \(\chi \):

\[\text{Top quark special?} \]
Introducing an additional fermion pair $X_L^T X_R^T$;

(1) topcolor generates the condensation $H \sim (X_R^T X_L^T)$

(2) topseesaw leads to a SM t' and a heavy Higgs $H_{\text{ew}} \sim 1 \text{ TeV}$

$\langle \bar{\chi}_L t_L, \bar{\chi}_L b_L \rangle \Rightarrow$ EWSB and a heavy Higgs $m_H \approx 1 \text{ TeV}$

Top quark special? $m_t \approx \sqrt{\frac{v^2}{2}} = 174 \text{ GeV}$

$\chi_L \approx \chi_R \approx 4 \text{ TeV}$
New symmetries introduced to cancel the (1-loop) quadratic divergence.

Little Higgs: as a pseudo Nambu-Goldstone boson (see G. Kribs)
With the help of extra-dimensions, gravity/string theories resolve the large hierarchy. By the help of extra-dimensions, low-scale gravity/string theories resolve the large hierarchy.

New states predicted: KK, stringy, and winding modes depending on the geometry of the extra-dim.

\[M^2_n \sim n^2 k R^2, n^2 M^2 S, n^2 w R^2 M^4 S. \]

\[(S_W H^m u, S_W s u, \frac{H}{f_u} \sim \frac{u}{f} W \]

With the help of extra-dimensions, low-scale gravity/string theories resolve the large hierarchy:

\[M_{n+2} \sim M_2^{S/n} / R^n \rightarrow O(1 \text{TeV}) \]

New states predicted: KK, stringy, and winding modes.

TeV-scale Black Holes: For a black hole of mass \(M_{BH} \), its size is

\[r_{bh} = \sqrt{\frac{\frac{1}{8\Gamma(\frac{n}{2}+2)}}{\frac{2}{n+2} \left(\frac{2}{n+2}\right)}} \]

\[\frac{M_{BH}}{M_{pl}^4} \] in 4d

Gravitational/strong gravitational theories resolve the large hierarchy.

Extra-dimensions: (see G. Guidice, T. Rizzo, S. Nandi)
With the help of extra-dimensions, low-scale gravity/string theories resolve the large hierarchy: $M_n^{n+2} \approx \frac{m_{W_H}}{M^{n+1}} \rightarrow \mathcal{O}(1 \text{ TeV})$.

New states predicted: KK, stringy, and winding modes (depending on the geometry of the extra-dim.)

$\frac{S}{4} W^2 H^{m_2 u} W^2 H^{s u} \frac{S}{2} W^2 \frac{H}{2} u \sim \frac{u W}{S}$

Gravitivity/string theories resolve the large hierarchy with the help of extra-dimensions, low-scale (see G. Guidice, T. Rizzo, S. Nandi).
SUSYGUTS with extra-dimensions

- Hall, Nomura, Smith.

- dotted: 321 gaugino KK modes; thin solid: XY and 321 KK gauge.
- thick solid: MSSM gauginos; dot-dashed: XY gauginos;
- dashed (bottom up): $[\tilde{e},\tilde{\mu},\tilde{\tau}]$, $[\tilde{\nu}_e,\tilde{\nu}_\mu,\tilde{\nu}_\tau]$ and $[\tilde{u},\tilde{c},\tilde{t}]$ nearly degenerate.

SU(5) GUTS with extra-dimensions
Fermion masses and mixing remain the most challenging task!

(D). The flavor sector:
The flavor sector: Fermion masses and mixing remain the most challenging task.

(D). The flavor sector:

\mathcal{SM}: 20+ free parameters of g, τ, ν.
The flavor sector:

- Fermion masses and mixing remain the most challenging task

SM: 20+ free parameters of q, ℓ, ν

Ansatzs/textures for mass/mixing relations
• Attempts in ETC/Walking TC/Topcolor assisted TC/Top-seesaw...

• Ansatz/textures for mass/mixing relations

• SM: $20^+ \text{ free parameters of } q, \ell, \nu$

Fermion masses and mixing remain the most challenging task!

(D) The flavor sector:
The flavor sector: Fermion masses and mixing remain the most challenging task.

\[\text{Froggatt-NielSEN's mechanism (family symmetry e.g., SMG}_3^3 \]

\[\text{SM: 20+ free parameters of } q, g, \lambda \]

Attempts in ETC/Wajking TC/Topcolor assisted TC/Top-seesaw...

Attempts/textures for mass/mixing relations

\(\text{The flavor sector:} \)
The flavor sector:

Fermion masses and mixing remain the most challenging task

(D). The flavor sector:

\begin{itemize}
 \item Fermion mass relations
 \item Froggatt-Nielson's mechanism (family symmetry e.g. (SMG)3)
 \item Ansätze/textures for mass/mixing relations
 \item Attempts in ETC/Walkirkig TC/Topcolor assisted TC/Top-seesaw
 \item SO(5): \(y_b = y_t = y_\tau \)
 \item SM: \(20 + \) free parameters of \(q, \ell, \nu \)
\end{itemize}
The flavor sector:

Fermion masses and mixing remain the most challenging task.

\(\text{(D). The Flavor Sector:} \)

- SM: 20+ free parameters of \(q, \bar{q} \), \(\nu, \bar{\nu} \)

- Ansatz/textures for mass/mixing relations

- Froggatt-Nielsen's mechanism (family symmetry e.g. (SM(3))

- Attempts in ETC/Walking TC/Topcolor assisted TC/Top-seesaw

- See-saw mechanism for \(m_\nu \approx \frac{m_D^2}{M_\text{IR}} \)

- \(\phi = \phi = \phi : SO(10) \) (E.g. \(SU(5): y_b = y_\tau = y_t \))

- SMY GUT's relations,
The flavor sector:

- Fermion masses and mixing remain the most challenging task.

SM: $20 + \text{free parameters of } g, \xi, \lambda$

SO(10) : $\text{SUSY GUTS relations,}$

- Froggatt-Nielsen’s mechanism (family symmetry e.g. SMG_3)

- Ansatz/textures for mass/mixing relations

- Fermion separation in extra-dimensions

- See-saw mechanism for $m_\nu \approx \frac{m_D}{M_R}$

- Attempts in ETC/Walkking TC/Topcolor assisted TC/Top-seesaw
The flavor sector: Fermion masses and mixing remain the most challenging task!

- SM: 20+ free parameters of \(g, \lambda, \nu \)
- See-saw mechanism for \(m_\nu \approx m_D^2/M_R \)
- Froggatt-Nielsen’s mechanism (family symmetry e.g. (SMG)\(^3\))
- SUSY GUTs relations, e.g. \(SU(5): y_b = y_\tau \); \(SO(10): y_t = y_b = y_\tau \)
- Ansatz/textures for mass/mixing relations
- Attempts in ETC/Walking TC/Topcolor assisted TC/Top-seesaw...

Fermion separation in extra-dimensions
- Calculations in heterotic orbifold/intersecting D-branes
Further experiments for more hints.

- Calculations in heterotic orbifold/intersecting D-branes
- Fermion separation in extra-dimensions
- See-saw mechanism for $m_\nu \approx m_\nu^H / M_R$
 - $y_t = y_\tau, y_t = y_\tau, SU(5)$
 - $y_b = y_\tau, SU(5) \cap SO(10)$
- Froggatt-Nielsen's mechanism (family symmetry e.g. SM(G)_3)
- SUSY GUTS relations
- Attempts in ETC/WMIRing T/C/Topcolor assisted T/C/Top-seesaw
- Ansatz/textures for mass/mixing relations
 - SM: 20 free parameters of ν_i
- Fermion masses and mixing remain the most challenging task!
For any scenario beyond SM, VLHC will contribute:

\[\text{Multi-TeV Squarks} \]

\[n \frac{p}{q} : \text{FCNC} \]

\[\text{SUSY needs VLHC} \]

\[\text{Multi-TeV Squarks} \]

\[n \frac{p}{q} : \text{FCNC} \]
SUSY Breaking Messengers: $\Phi \sim O(\text{few} - 100 \text{TeV})$.

If the messenger number is conserved, then the Lightest Messenger Particle (LMP) is stable, leading to

$\Phi' \rightarrow \Phi^0 \rightarrow e + \mu, \tau, \gamma + \bar{\nu}, \bar{\tau}, \bar{\nu}, \bar{\tau}$, etc.

Interesting signal; large SM backgrounds...

If $\Phi, \bar{\Phi}$ couple to SM multiplets (fermions...), then

$\Phi^0 \rightarrow e + \bar{\mu}, \bar{\tau}, \bar{\nu}, \bar{\tau}, \bar{\nu}$, etc.

Almost like RP violating interactions (almost like R_p violating interactions)

Which would lead to spectacular new experimental signatures!

$\Phi^0 \rightarrow e + \mu, \tau, \gamma + \bar{\nu}, \bar{\tau}, \bar{\nu}$, etc.

If the messenger number is conserved, then the lightest messenger particle

Almost like R_p violating interactions

Which would lead to spectacular new experimental signatures!
Strong dynamics needs VLHC:

\[\chi_R, \chi_L \rightarrow t\bar{t}, h, bW... \]

\[\text{with good signatures.} \]

\[m_\chi = 1 \text{ TeV} \]

\[m_\chi = 3 \text{ TeV} \]

\[m_\chi = 5 \text{ TeV} \]

\[M_Z = 1 \text{ TeV} \]

\[M_W = 10 \text{ TeV} \]

\[\sigma (\chi \chi) \rightarrow (fb) \]

\[\Rightarrow \]

\[\chi_R, T' \rightarrow \chi_L, W^{\pm} \]
Little Higgs: the "top-partner" T with $\mathcal{L} \leftarrow W, Z, t\bar{t}, bW, th$ with good signatures.

(b) Little Higgs: the "top-partner" T
The production rate is comparable or higher than $pp \rightarrow \bar{t}t$.
At high energies, e.g.,

\[\text{two very mass jets!} \]
Strongly-interacting Electroweak Sector: If no SUSY found at the LHC, W+W→W+W scattering must reveal new dynamics

\[\Lambda_{\text{EW}} \approx \sqrt{8/\pi} v \approx 1.2 \text{ TeV} \]

\[\sqrt{s} \approx 2 \text{ TeV} \Rightarrow \sqrt{s} \gg 4 \text{ TeV} \Rightarrow 2 \text{ TeV} < M_{\text{W+W}} \]

If no SUSY found at the LHC, scattering must reveal new dynamics.
Contact Interactions: Compositeness?

Heavy bosons and quark/lepton sub-structure lead to 4-fermion contact interactions:

\[
\frac{V}{Z}^4
\]

The best channel at hadron colliders is the DY process:

\[
X + \bar{n} + n + e + e \leftrightarrow Z \leftrightarrow dd
\]

The sensitivity to the "composite scale \(\Lambda \)" goes like:

\[
s^2 \Lambda^4
\]
4-fermion contact interactions lead to 4-fermion contact interactions: Compositeness? Contact Interactions: Compositeness?

Contact Interactions: Compositeness?

The best channel at hadron colliders is the DY process:

The sensitivity to the "composite scale \(\Lambda \)" goes like

\[
X + n + n/ e + e \leftarrow Z \leftarrow pp
\]

Heavy bosons and quark/lepton substructure lead to 4-fermion contact interactions:

\[
\frac{V}{\Lambda^4}
\]

So that \(\text{Tevatron} \leftarrow \text{LHC} \leftarrow \text{VLHC} \):

\[
\frac{4}{\Lambda^4} (1.8 \text{ TeV}) \sim \frac{4}{\Lambda^4} (3 \text{ TeV}) \sim \frac{4}{\Lambda^4} (14 \text{ TeV}) \sim \frac{4}{\Lambda^4} (25 \text{ TeV}) \sim \frac{4}{\Lambda^4} (100 \text{ TeV}) \sim \frac{4}{\Lambda^4} (170 \text{ TeV})
\]

\(170 \text{ TeV} \Rightarrow 10^{-18} \text{ cm} \) would cover the "little hierarchy".
Deep into extra-dimensions at VLHC:

(a) Large extra-dim ADD & warped extra-dim RS:

Left: ADD with \(M^* = 20, 25, 30, 35 \text{ TeV} \);
Right: RS with \(M_{KK} = 16 \text{ TeV} \).

* T. Rizzo
Low-scale string resonances:

\[p p \rightarrow S \n \rightarrow l^+ l^- \]

String state masses

\[M^{\text{state}}(\text{GeV}) = \sqrt{n} M_S = \sqrt{n} \text{15 TeV}. \]

\[\mu^\Lambda = \frac{1}{\mu^\Lambda} \]

\[X - l + l \leftarrow X \mathcal{L}_u S \leftarrow d d \]

(b) Low-scale string resonances:

*TH, P. Burikham
Black Hole Production at the 200 TeV VLHC

At $\sqrt{s} = 200$ TeV, $\sigma(M_B < 25 \text{ TeV}) = 3 \text{ pb}$.

Greg Landsberg
• Bread & butter SM physics

• Rare processes like $\gamma \rightarrow \mu^+\mu^-$ (D. Rainwater)

• Total cross section as expected dd

• $10-100$ times more $W/Z, WW, \bar{t}...$

• \(\times 10^2 \)
More Higgses: $pp \rightarrow Vhh$; $WW \rightarrow hh$ (see D. Rainwater) and a very heavy "Higgs" ($1\ TeV$)
Any hope to probe the Majorana mass?
Any hope to probe the Majorana mass?
Multi-W production via Sphalerons (see A. Ringwald)

Electroweak instantons/sphalerons induce $B + \tau \bar{\tau}$ violating transitions

Multijet production via H, W, M (see A. Ringwald)

Enhanced for $M_W < s \sqrt{\alpha} \leq 16\pi s$.

With total cross section

\[\sigma \left(pp \to nW^+nW^- \right) \sim (10^{10}) \text{ pb} \]

\[\frac{s}{16\pi} \geq \frac{M_W}{s} \sqrt{\alpha} \Rightarrow M_W \sim (10^{10}) \text{ pb} \]
Top Reasons For The VLHC.
Top Reasons For VLHC:

• There are unanswered questions left after the LHC/LC.

 (In any scenarios, pretty much!)
• There are unanswered questions left after the LHC/LC.

• It is exciting to think about a physics program at a Very-Large machine.

(in any scenarios, pretty much!)
Top Reasons For The VLHC:

• There are unanswered questions left after the LHC/LHC.

• While the LHC is to study the "Large Hierarchy,"

• VLHC is to explore the "Little Hierarchy."

• It is exciting to think about a physics program at a Very-Large machine.

(If any scenarios, pretty much!)

• There are unanswered questions left after the LHC/LHC.
There are unanswered questions left after the LHC/LC.

• There must be things out there we have never thought about!

VLHC is to explore the "Little Hierarchy".

while the LHC is to study the "Large Hierarchy",

It is exciting to think about a physics program at a Very-Large machine.

(If any scenarios, pretty much!)

• There are unanswered questions left after the LHC/LC.

Top Reasons For The VLHC:
Go for the energy frontier!

- There must be things out there we have never thought about!
- VLHC is to explore the "Little Hierarchy".
- While the LHC is to study the "Large Hierarchy."
- It is exciting to think about a physics program at a Very-Large machine.
- (In any scenarios, pretty much!)
- There are unanswered questions left after the LHC/LC.

Top Reasons for the VLHC: