

Calorimeters for SLHC and VLHC

Calorimeters for the SLHC and VLHC

Jim Freeman

Fermilab

Mass Reach vs energy and L

SLHC Detector Environment

	LHC	SLHC
$egin{array}{c} \sqrt{\mathrm{s}} \ \mathrm{L} \ \int L dt \end{array}$	14 TeV $10^{34} / (cm^2 \cdot sec)$ 100 fb^{-1} / yr	14 TeV $10^{35} / (cm^2 \cdot sec)$ $1000 fb^{-1} / yr$
Bunch spacing dt	25 ns	12.5 ns
N. interactions/x-ing	~ 20	~ 100
dN _{ch} /dη per x-ing	~ 100	~ 500
Tracker occupancy Pile-up noise Dose central region	1 1 1	5 ~2.2 10

Bunch spacing reduced 2x. Interactions/crossing increased 5 x. Pileup noise increased by 2.2x if crossings are time resolvable.

VLHC Detector Environment

	LHC	VLHC
$egin{array}{c} \sqrt{\mathrm{s}} \ \mathrm{L} \ \int L dt \end{array}$	14 TeV $10^{34} / (cm^2 \cdot sec)$ $100 fb^{-1} / yr$	100 TeV $10^{34} / (cm^2 \cdot sec)$ 100 fb^{-1} / yr
Bunch spacing dt	25 ns	19 ns
N. interactions/x-ing	~ 20	~ 25**
$dN_{ch}/d\eta$ per x-ing	~ 100	~ 250**
Tracker occupancy Pile-up noise Dose central region	1 1 1	2.5** 2.5** 5**

** 130 mB inelastic cross section, $\langle N_{ch} \rangle \sim 10$, $\langle Et \rangle = 1$ GeV

ATLAS Calorimeters

ATLAS Calorimeter

ATLAS LAr: the basic structure

Argon double gap 2x2 mm

Thickness of absorber plates:

1.1mm for pseudorapidities > 0.8 and 1.5 mm close to the center of the detector: total of \sim 26 X_0

ATLAS FCAL

ATLAS Forward Calorimeter

- Tag forward jets
- Measure missing E_⊤

- $\sim 40 \text{Mh z}$
- $\sim 10^8 \,\text{GeV/cm}^2/\text{s}$ at $\eta = 4.5$
- ~ 106 Gy/year
- ~ 100 Watts absorbed

ATLAS FCAL

FCAL End View

Liquid Argon gap
• 250 / 375 / 500 μm

Anode Spacing (FCAL1/2/3)

• 7.5 / 8.18 / 9.00 mm

Atlas LAr Calorimeter

Closing of 1st wheel

ATLAS Tilecal

Longitudinal tile configuration ⇒ good hermeticity and "easy" construction

Fe/Scint/WLS fiber

4:1 Fe:Scint

ATLAS TILECAL

36 modules of +/- endcaps, central wheel

CMS calo structure

•PWO Light Yield is rather low: ~10 pe/MeV so photon sensors with some amplification are needed (Avalanche PhotoDiodes in the barrel, VacuumPhotoTriodes in the Endcap)

⇒Low S/N ratio and complex electronic

	ΔηχΔφ	Cell size (mm)	Depth(X ₀)	Number channels
Barrel η<1.48	0.0175 x 0.0175	21.8 x 21.8	25.8	61200
Endcap 1.48<η<3.0	variable	29.6x29.6	23	15632
End-cap pres 1.65<η<2.6	hower	63 x 1.9	3	~130000

J. Freeman FNAL

Two APDs per capsule

Barrell: 50% delivered

Single stage photomultiplier tube

Gain 8-10 at B=4T, QE 20% at 420 nm

CMS ECAL

~20000 barrel crystals accepted First supermodule assembled in spring 2002 (5 by end 2003)

CMS HCALs

J. Freeman FNAL Oct 17, 2003

HCAL: HE and HB

Optical Design for CMS HCALs

Common Technology for HB, HE, HO

Layer to Tower Decoding Fiber

HF detector

Iron calorimeter Covers 5 > h > 3Total of 1728 towers, i.e. 2 x 432 towers for EM and HAD h x f segmentation (0.175 x 0.175)

To cope with high radiation levels (>1 Grad accumulated in 10 years) the active part is Quartz fibers: the energy measured through the Cerenkov light generated by shower particles.

HF Fiber stuffing at CERN

J. Freeman FNAL Oct 17, 2003

Issues for SLHC

- Radiation Damage
- Rate Effects
- Bunch ID determination
- Activation/access

Scintillator - Dose/Damage

Scintillator under irradiation forms
Color centers which reduce the
Collected light output (transmission loss).

 $LY \sim \exp[-D/Do]$, $Do \sim 4 Mrad$

Current operational limit ~ 5 Mrad

Radiation damage to scintillators

Barrel doses are not a problem. For the endcaps a technology change may be needed for 2 < |y| < 3 for the CMS HCAL.

CMS ECAL rad dam

Front irrad., 1.5Gy, 0.15Gy/h

 $LYloss=(LY_0-LY_{irr})/LY_0 \quad (\%)$

1) Scintillation mechanism not affected but Transparency loss

2) Saturation level (reached after a few hours of LHC!)

SLHC: ATLAS

ATLAS:

Space charge effects: if drifting ions start modifying the field near the anode signal is affected (onset of regime goes like V²/d⁴μ, V volt, d gap and μ ion mobility). Measurements in test beam show 1% loss with energy flow 5 10⁶ GeVcm⁻²s⁻¹

Table 19: Comparison of the critical density with the energy density for ATLAS liquid argon calorimeters

	Critical density	ATLAS 10 ³⁴	ATLAS 10 ³⁵
Barrel EM, η=0	5×10^{6}	0.5×10^{5}	5×10^{5}
Barrel EM, η =1.3	4×10^{6}	1.2×10^{5}	1.2×10^{6}
End-cap EM η=1.4	3×10^{6}	1.3×10^{5}	1.3×10^{6}
End-cap EM η =3.2	5×10^{6}	2.5×10^{6}	25×10^{6}
FCAL η =3.2	1500×10^{6}	2.5×10^{6}	25×10^{6}
FCAL η=4.5		130×10^{6}	1300×10^{6}

Might decide to use cold pressurized gas or LKr in this region!

SLHC, ATLAS cont.

◆ Voltage drop due to ionization currents: the HV supply chain has resistors meant to decouple the various electrodes. At low temperature the value of the resistor increases by a factor 10 (possibly with large fluctuation).

Table 20: The voltage drops expected in ATLAS liquid argon calorimeters

	Resistance/0.05	Current at 10 ³⁴	Voltage drop 10 ³⁴	Voltage drop 10 ³⁵
Barrel EM, η=0	~ 1 Mohm	80 nA	0.08 V	
Barrel EM, η =1.3		200 nA	0.2 V	2 V
End-cap EM, η =2.4		400 nA	0.4 V	4 V
End-cap EM, η =2.5		4000 nA	4.0 V	40 V
End-cap EM, η =3.2		8000 nA	8.0 V	80 V

Cold pressurized gas will do...

Bunch ID: CMS HB Pulse Shape

100 GeV electrons. 25ns bins. Each histo is average pulse shape, phased +1ns to LHC clock

12 ns difference between circled histo's → no problem with bunch ID

Timing using calorimeter pulse shape

Calculated event time (vertical scale) vs actual event time. CMS HE, 100GeV pions. Also works for lAr. DO timing resolution 4ns/E (in GeV). Watch pile-up though. The faster the calorimeter, the less important pile-up will be.

What about ATLAS?

CMS HE Calorimeter

J. Freeman FNAL Oct 17, 2003

Atlas lAr EM Calorimeter

Not so different, after shaping. Bunch ID should be no problem

HF Cerenkov Calorimeter Pulse Shape

Activation and Radiation Exposure Limits

Annual exposure from natural radioactivity ∼1 mSv

CERN annual limit for radiation workers: 15 mSv

BUT

EU regulations likely to come down Need also (safety) margin in design wrt reality

Use a limit of 5 mSv per year per person for *design* of LHC, experiments and all access scenarios

100 hours annual access time for one person in a (typical LHC/CMS) environment with 50 μ Sv/h

Design of all access and maintenance has to be done within the 5 mSv annual limit

Activation in "forward" Region

Dose rates μ Sv/h after 10 y LHC and 1 d cooling

Activation in "endcap" Region

Dose rates μ Sv/h after 10 y LHC and 1 d cooling

ATLAS/CMS at SLHC

- Both detectors will have problems in the endcap region.
- \bullet ATLAS \rightarrow rate problems. Replace lAr for $\eta > 1.5$?
- ◆ CMS → radiation damage problems in endcap.
 New scintillators? Or new technology?
- ◆ Activation of endcap/forward calorimeters will severely limit possible maintenance. → Maintenance free?
- ◆ → New R&D

Profitable R&D Directions?

- ◆ Cerenkov calorimeters are rad-hard and fast → good candidates for future colliders
 - Quartz fiber or plate
 - Gas cerenkov
- ♦ New photon detectors → low cost, small, rad-hard
 - Red-sensitive HPDs
 - Geiger-mode photodiodes
- ♦ New scintillator materials → rad-hard
- New directions:
 - "Spacal" with liquid scintillator capillaries coupled to quartz fiber light guides?

New Calorimeter -> Energy Flow

- Use tracking to improve jet response
- New calorimeters should be designed with this in mind.

Jet Res improvement using tracking. CMS 4T B field

Radius of ECAL front ~ 1.3 meters

Charged particles P_T < 0.8GeV→ Looper in barrel.

Fraction of energy escape from a jet cone (R=0.5) in 4T field.

Jet improvement by using tracking info

"Energy Flow"

- Tracking from CMS, ECAL 5% stochastic, 1% constant, and HCAL 50% stochastic and 3% constant.
- *Note that a jet has $\langle z_{max} \rangle \sim 0.22$. For charged particles $\langle 100 \text{ GeV (jets} \langle 0.5 \text{ TeV}) \text{ use tracks to measure E.}$

For present energy scales at the LHC use tracker energy measurement if possible. At a VLHC this will not help. (Without substantial improvements in tracking)

Energy Flow Jet Improvement

Resolution

20GeV 24% → 14% 100GeV 12% → 8%

E_T Scale

< 2% in 20-20GeV

0: no correction (calorimeter only) 1: calo response - simple average 2: calo response - library 3: full correction (library of response, track-cluster match, out-of-cone tracks)

4 out-of-cone tracks correction only

Improved Dijet Mass

There is a $\sim 22 \%$ improvement in the dijet mass resolution. Implies that calorimeter resolution is not the whole story. (Final State radiation)

MC tracks of Pr > 0. GeV used

Energy Flow

Nr charged tracks generated/matched vs jet E_T . At $E_T \sim 50$, almost all tracks matched

Mean 81.7 GeV, (21%)

J. Freeman FNAL Oct 17, 2003

Mean 105.5 GeV, (17%)

- Issues for designing new calorimeter for VLHC
- Review the basics

Transverse Size - HCAL

Shower size limits the number of resolvable "particles" in a jet, especially the dense "core" of a jet. Limits set to "energy flow" 5 cm reasonable.

Hadron Cascades and Energy Flow

Large Fluctuations in longitudinal development of hadron showers set limits on utility of depth segmentation. → fine longitudinal depth segmentation only samples intrinsic fluctuations in shower development

SDC Hanging File Calorimeter Data. 96 layers of scintillator, each read out with separate pmt.

Intrinsic Limitations to Containment

Jet "splitting", g -> QQ and Q -> qlv, puts intrinsic limit on required depth. Jets themselves "leak".

Calorimeter Depth Requirements

Relative Resolution vs depth

Conclusion \rightarrow no gain for calorimeters thicker than $\sim 10-12 \ \lambda$

 E_{leak}/E_{ν} as a function of depth. Hatched area is where neutrinos dominate

Effects of Final State Radiation

Full detector simulation

Z's at the LHC in "CMS" detector

LHC - CMS Study of FSR

- M_{JJ}/Mo plots for dijets in CMS with and without FSR. The dominant effect of FSR is clear.
- The d(M/Mo)/(M/Mo) rms rises from ~ 11% to ~ 19%, the distribution shifts to smaller M/Mo, and a radiative low mass tail becomes evident.

dM/M

M/Mo

Hadron Collider- Dijet dM/M

♣ A series of Monte Carlo studies were done in order to identify the elements contributing to the mass error. Events are low P_T, Z -> JJ. dM/M ~ 13% without FSR.

FSR is the biggest effect.
The underlying event is the second largest error (if cone R ~ 0.7).
Calorimeter resolution is a minor effect.

Effects of Pileup Events

120 GeV Z'

J. Freeman FNAL Oct 17, 2003

Pile-up Missing Et

- \circ Study done for CMS. Three major sources of detector induced missing E_T incomplete angular coverage, B field "sweeping" to small angles and calorimetric energy resolution.
- Clearly need radiation hard calorimetry to go to smaller angles as C.M. energy increases particularly. Presently dose < 1 Grad at |h| = 5.
- At SLHC, pileup events create a background of $\sim 5 \text{GeV} * \text{sqrt}(62) = 40$ GeV E_{T} -miss / crossing. Fatal for W's, no problem for SUSY.

Contributions to E_T -miss for minbias events

Intrinsic Limitations

- Transverse size set by shower extent, either Xo or l -> limit to tower size.
- Longitudinal depth set by containment to
 10 l. Limit on depth set by jet leakage.
- Speed needs to be fast enough to identify bunch crossing (25 ns/LHC; 12.5 ns/SLHC; 18 ns VLHC)
- Jet resolution limited by FSR at LHC, not calorimeter energy resolution.

New Calorimeter Design

If you are building a new calorimeter for SLHC/VLHC

- Speed is very important (12.5ns bunch spacing)
- Radiation resistance critical
- Any new calorimeter will be designed with Energy Flow in mind. To take good advantage of Energy Flow, ~5X5 cm HCAL tower size
- Limited longitudinal segmentation
- 10-12 λ thick
- Energy resolution not too important.
- Can see two variants:
 - ATLAS-like liquid ionization
 - CMS-like optical

Summary

- ATLAS and CMS Hadron calorimeters will need upgrade for SLHC
- New algorithms (Energy Flow) improve jet resolution. Ultimate limits of method include finite shower sizes. Unfortunately utility decreases for increasing jet energies.
- Final State radiation remains major limitation to di-jet mass resolution. Address this with improved analysis methods?
- Studies of higher mass states will require higher luminosity which will put in premium on radiation resistance.
- Colliders with increased luminosity and energy will require detector development:
 - Cerenkov calorimeters
 - **Replacement fluids for LAr in forward regions**
 - Advanced photodetectors
 - **Improved materials (scintillators or quartz fiber)**
 - Possible new directions (gas-cerenkov calorimeter)

Acknowledgements

Thanks to Tiziano Camperisi and Dan Green.