

ICFA Seminar on "Future Perspectives in High Energy Physics"

LHC Detector Upgrade – Oct. 9 Dan Green Fermilab

ICFA Seminar, Oct. 8-11, 2002

- Physics Basics
 - Z' vs
 - Rapidity Range
 - Minbias
 - Pileup and Jets

CERN-TH/2002-078 "Physics Potential and Experimental Challenges of the LHC Luminosity Upgrade"

10x will be challenging!

- Occupancy and Radiation Dose
- Tracker Upgrade
- Calorimetry
- Muons
- Trigger and DAQ

• For $\sqrt{\sqrt{10}}$, if N = 100 is discovery level then M ~ 5.3 TeV is ~ the mass "reach" in 1 year (M=4 -> 5.3 TeV).

• The leptons will be sharply limited to low y or large angles ("barrel") which helps.

N=100 Events, Z' Coupling

In general mass reach is increased by ~ 1.5 TeV for Z', heavy SUSY squarks or gluinos or extra dimension mass scales. A $\sim 20\%$ measurement of the HHH coupling is possible for Higgs masses < 200 GeV. However, to realize these improvements we need to maintain the capabilities of the LHC detectors.

Heavy States decay at wide angles. For example Z' of 1 and 5 TeV decaying into light pairs. Therefore, we need to concentrate on wide angle detectors.

Inclusive Interactions

• The inclusive p-p interaction has an inelastic cross section ~ 50 mb.

मुत्तत्त

- It produces ~ equal numbers of which are distributed ~ uniform in rapidity, y, with a "density" ~ 9 pions per unit of y.
- The pions have a distribution in transverse momentum with a mean, ~0.6 GeV.

Pileup and Luminosity σ

• For ~ 50 mb, and the charged pions/unit of y with a luminosity and a crossing time of 25 nsec (12.5 nsec ?):

In Othersonitofy

 In a cone of radius = 0.5 there are ~ 141 pions, or ~ 84 GeV of transverse momentum. This makes low E_t jet triggering and reconstruction difficult.

ICFA Seminar, Oct. 8-11, 2002

Z'(120) Mass Resolution

Note that the calorimeter cells are still fairly sparsely populated (granularity

) at 10^{34} . With the cuts shown, the dM/M with Gaussian fits is the same at L/5 and at L. Use the fact that QCD implies that there is a core of the jet at small dR and large x. Extend to 10x L using tracker and energy flow inside the jet?

Tracker and Energy Flow

 For 120 GeV Z' match tracks in η and φ to "hadronic" clusters within the jet. Improves dijet mass resolution. Units are HCAL tower sizes. Also use track match to remove deposits from pileup vertices ?

These jets have

and <y> ~ 3. Lose 10x in fakes. We must use the energy flow inside a jet cone to further reduce the fake jets due to pileup. We can also use the tracker to remove charged energy from pileup vertices (in principle)

ICFA Seminar, Oct. 8-11, 2002

Tracking Detectors

- Clearly, the tracker is crucial for much of the LHC physics [e.g. e, µ, jets (pileup, E flow)].
- The existing trackers will not be capable of utilizing the increased luminosity as they will be near the end of their useful life.
- It is necessary to completely rebuild the LHC tracking detectors.

Tracker - Occupancy

• The occupancy, O, for a detector of area dA exposed for time dt at (r,z) is

- e.g. Si strip 10 cm x 100 μ m in a 25 nsec crossing at r = 30 cm is 1.3 %
- For higher luminosity, decrease dA, or decrease dt or increase r smaller, faster or further away.

Tracker Occupancy

- Preserve the performance using
 - Push Si strips out to ~ 60 cm. development
 - Push pixels out to 20 cm. development
 - For r < 20 cm. Need new technologies basic research
- Shrink dAdt 10x at fixed r to preserve b tagging?
- Possibilities
 - 3-d detectors electrodes in bulk columns
 - Diamond (RD42) radhard
 - Cryogenic (RD39) fast, radhard
 - Monolithic reduced source capacity.

Monolithic Pixel - DEPFET

Combine the detector and the readout for pixels?

- The ionizing dose due to charged particles is:
- The dose depends only on luminosity, r, and exposure time dt.
- For example, at r = 30 cm, the dose is 1.3 Mrad/yr – ignoring loopers, interactions,

• • • •

- DSM is radiation hard in 0.25 um
- 0.13 um is available use Moore's "law"
- Development needed track and adapt commercial processes
- Optical links development needed

• The dose in ECAL is due to photon showers and is:

• At r = 1.2 m, for Pb with Ec = 7.4 MeV, the dose at y=0 is 3.3 Mrad/yr, at |y|=1.5 it is 7.8 Mrad/yr.

The dose ratio is \sim Barrel doses are not aproblem. For the endcaps a technology change maybe needed for 2 < |y| < 3. For CMS endcap switchto quartz fiber?

ECAL

- For both ATLAS and CMS the barrel will probably tolerate the increased dose. There are issues of ~ 3x increased pileup noise and poorer isolation for electrons.
- ATLAS LA has space charge and current draw issues. CMS has APD leakage current noise issues in the barrel. The CMS endcap needs development.

- Both ATLAS and CMS will function in the barrel region.
- In the 3<|y|<5 region, a reduction to y < 4.2 keeps the dose constant. The loss of efficiency is not terrible (peak "tag"rate at |y|=3). Or replace quartz fibers with high pressure gas? Better tower granularity might be needed due to pileup and "fake" jets.
- At |y| ~ 3 the CMS scintillator needs development – better longitudinal segmentation and/or improved scintillator.

Scintillator - Dose/Damage

Scintillator under irradiation forms Color centers which reduce the Collected light output (transmission loss).

 $LY \sim exp[-D/Do]$, $Do \sim 4$ Mrad

This technology will not survive gracefully at |y| ~ 3 without development of improved scintillator.

Muons and Shielding

With added shielding, dose rates can be kept constant if angular coverage goes from |y|<2.4 to |y|<2. CSC migrate into barrel?

Fig. 24: Upper: the neutron fluxes in the low radius, high η -region of the CMS endcap muon detector for $\eta < 2.4$ and present LHC shielding $10^{34} \text{ cm}^{-2} \text{s}^{-1}$. Lower: same, for for $\eta < 2$ and possible shielding for SLHC $10^{35} \text{ cm}^{-2} \text{s}^{-1}$.

Trigger and DAQ

- Assuming LHC initial program is successful, raise the trigger thresholds.
- Rebuild trigger system to run at 80 MHz. Utilize those detectors which are fast enough to give a BCID within 12.5 nsec.
- Examine algorithms to alleviate e.g. degraded e isolation.
- Design for the increased event size (pileup) with reduced L1 rate and/or data compression.
- For DAQ track the evolution of communication technologies, e.g. 10 Gb/sec Ethernet.

300 GeV Pion – H2 test Beam

The shape of the pulse in time is \sim as expected – due to scint flours and HPD drift. Bunch crossing ID can be extended to 12.5 nsec (80 MHz)?

Summary

- The LHC Physics reach will be substantially increased by higher luminosity.
- To realize that improvement, the LHC detectors must preserve performance.
- The trackers must be rebuilt with new technology at r < 20 cm.
- The calorimeters, muon systems, triggers and DAQ will need development.
- The upgrades are likely to take ~ (6-10) years. The time to start is now, and the people to do the job are those who did it for the present detectors.

HH Study

Figure 4: The cross sections for gluon fusion, WW/ZZ fusion and double Higgs-strahlung WHH, ZHH in the SM. The vertical arrows correspond to a variation of the trilinear Higgs coupling from 1/2 to 3/2 of the SM value.

Figure 3. The m_{vis} distribution of the signal for $M_H = 180 \text{ GeV}$ in the SM (solid curve), for $\lambda_{HHH} = \lambda/\lambda_{SM} = 0$ (dashed line) and for $\lambda_{HHH} = 2$ (dotted line). The dot-dashed line shows the SM cross section in the large m_t limit. Qualitatively similar results are obtained for other values of M_H .

Get a first indication of HHH coupling before the LC?

Higgs Self Coupling

Table 8: Expected numbers of signal and background events after all cuts for the $gg \rightarrow HH \rightarrow 4W \rightarrow \ell^+ \ell'^+ 4j$ final state, for $\int \mathcal{L} = 6000 \text{ fb}^{-1}$.

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
$200~{\rm GeV}$	220	90	60	1500	1600	30	3.8

A ~ 20% measurement of the HHH coupling is possible for Higgs masses < 200 GeV. However, to realize these improvements we need to maintain the capabilities of the LHC detectors.

Kinematics

- A particle of mass M produced by partons of momentum fraction has the kinematic relations where s = C.M. energy squared. Thus, on average $\sqrt{}$
- The rapidity y is, related to pseudorapidity, $\sim y$.

Table 17: Hadron fluence and radiation dose in different radial layers of the CMS Tracker (barrel part) for an integrated luminosity of 2500 fb^{-1} .

Radius (cm)	Fluence of fast	Dose (kGy)	Charged Particle Flux (cm ⁻² s ⁻¹)
	hadrons (10^{14}cm^{-2})		$Flux (cm^{-2}s^{-1})$
4	160	4200	5×10^{8}
11	23	940	10^{8}
22	8	350	3×10^7
75	1.5	35	$3.5 imes 10^{6}$
115	1	9.3	1.5×10^{6}

- DSM is radiation hard in 0.25 um
- 0.13 um is available use Moore's "law"
- Development needed track and adapt commercial processes
- Optical links development needed

Table 18: The neutron fluence and radiation dose at shower maximum at different pseudorapidities for an integrated luminosity of 2500 fb^{-1} .

Pseudorapidity	ECAL Dose	HCAL Dose	ECAL Dose Rate
η	(kGy)	(kGy)	(Gy/h)
0 - 1.5	15	1	2.5
2.0	100	20	14
2.9	1000	200	140
3.5	-	500	-
5	-	5000	-

Barrel doses are not a problem. For the endcaps a technology change may be needed for 2 < |y| < 3. For CMS endcap switch to quartz fiber?

• Heavy states are produced at wide angle to the beams and strike the "barrel".

Note that the calorimeter cells appositely fairly sparsely populated (granularity

dR and log(x) for Z'(700)

Clearly the pileup has dNdR~R (area), while the jet shows a peak at R ~ 0.2. The pileup is at low x, while there is a jet "core" at high x. Use tracker to subtract charged pileup? Reduce pileup by 3x.

Pileup Subtracted (logx, dR) Jet Contours

For both Z'(120) at low L and for Z'(700) at design L there is a core of the jet at small dR and large x. Extend to 10x L using tracker and energy flow inside the jet?