Overview of Geant4 Physics

Fermilab Geant4 Tutorial
27-29 October 2003
Dennis Wright (SLAC)

Outline

Particles and Tracks

Tracking

Physics Processes

Production Cuts

User Physics Lists

Particles and Tracks (1)

= What is a particle in Geant4?

= A collection of all the information needed to propagate it through a
material

= Geant4 arranges this information in layers, starting with:

Particle
Simply a definition, no energy, direction, ...
Only one instance of each type
Dynamic Particle
Gives the particle its kinematic properties
Track

Places the dynamic particle in context
Snapshot of particle
Not a collection of steps

Particles and Tracks (2)

Position, volume, track length
TOF, ID of itself and mother

E, p, polarization, time
pre-assigned decays

PDG info: mass, charge, spin,
lifetime, decay table

Particles and Tracks (3)

Summing up the previous two slides: a track is a “fully
dressed” particle which at any step along its trajectory
contains the instantaneous particle information

Track object lifetime

= Created by generator or physics process (such as decay of mother)
= Lives until it

= decays,

= goes out of the world volume,

= goes to zero KE, or

= IS killed by the user

User access to track info

= Many public methods: GetPosition(), GetVolume(), GetMaterial(),
GetCreatorProcess(), GetMomentum(), GetParticleDefinition(), ...

Particles and Tracks (4)

= Putting particles into your simulation

Geant4 kernel takes care of creating tracks, but the user needs to
construct all the particle types that will appear in the simulation

For example, if you need electrons and protons, the following lines
must be included in your code:

G4Electron::ElectronDefinition() ;
G4Proton::ProtonDefinition() ;

Geant4 provides methods which construct entire classes of particles:
=« G4BosonConstructor
= G4LeptonConstructor
= G4MesonConstructor
= G4BaryonConstructor
= G4lonConstructor
« G4ShortlivedConstructor

Particles and Tracks (5)

= Particle types available in Geant4 (> 100 by default)
= quarks, diquarks, gluons
= photons
= leptons
= Mmesons, baryons
= nuclei, ions
= geantinos

= What does Geant4 do with them?
= Stable, long-lived (> 10-'* sec) are tracked
= KYis immediately redefined as K° or K% which is tracked until decay
= Short-lived never tracked but decayed immediately

Tracking (1)

= How does Geant4 propagate a particle through a detector ? It
must take into account:
= Track/particle properties
= All physical processes
= Volume boundaries
= Electromagnetic fields

= The job is done by G4SteppingManager, with help from:
= G4TrackingManager (gets a track from G4EventManager)
= G4ProcessManager (manages physics processes for each particle type)
= G4Navigator (locates volume boundaries)
= G4Transportation (provides a method for integrating the field equation)

Tracking (2)

= The basic element of tracking is the Step

= |t consists of two points and the “delta” information of a
particle
= Step length, energy loss during step, change in elapsed time, etc.

= Each point knows which volume it is In

= If step limited by boundary, end point is located on boundary, but it
logically belongs to next volume

Tracking Algorithm (simplified) (1)

Calculate track velocity

Each physics process must propose a step length
= Interaction dependent, look up cross section, calculate MFP
= “Physical step length” is the minimum of all proposed lengths

Navigator finds “safety” distance to nearest boundary
If physical step length is < safety take physical step length

If not, step is limited by geometry instead of physics

= Take step to boundary, subtract step length from mean free path of
physics processes

10

Tracking Algorithm (simplified) (2)

If physics process has limited the step, do the interaction

Update track properties

Check for track termination

If step limited by volume boundary, assign it to next volume
Invoke G4UserSteppingAction to allow user intervention
Update processes’ MFP

11

Trajectory

The Trajectory iIs a record of a track’s history

= For every step, some information is stored as an object of the
G4Trajectory class

The user can create his own trajectory class by deriving
from G4VTrajectory and G4VTrajectoryPoint base classes

WARNING! Storing trajectories for secondaries generated in
a shower may consume large amounts of memory

12

Physics Processes (1)

= All the work of particle decays and interactions is done by
processes

= Transporation is also handled by a process

= A process does two things:

= Decides when and where an interaction will occur
=« Method: GetPhysicallnteractionLength()

= Generates the final state (changes momentum, generates secondaries,
etc)

=« Method: Dolt()

= The physics of a process may be:
= Well-located in space - PostStep
= Not well-located in space - AlongStep
= Well-located in time - AtRest

13

Physics Processes (2)

= The most general process may invoke all three of the above
actions

= In that case six methods must be implemented
(GetPhysicallnteractionLength() and Dolt() for each action)

= For ease of use, “shortcut” processes are defined which
iInvoke only one.
= Discrete process (has only PostStep physics)
= Continuous process (has only AlongStep physics)
= AtRest process (has only AtRest physics)

14

Example Processes (1)

Discrete process: Compton Scattering

= Step determined by cross section, interaction at end of step
(PostStepAction)

Continuous process: Cerenkov effect

= Photons created along step, # roughly proportional to step length
(AlongStepAction)

At rest process: positron annihilation at rest
= No displacement, time is the relevant variable

These are so-called “pure” processes

15

Example Processes (2)

Continuous + discrete: ionization

= Energy loss is continuous

= Moller/Bhabha scattering and knock-on electrons are discrete
Continuous + discrete: bremsstrahlung

= Energy loss due to soft photons is continuous

= Hard photon emission is discrete

In both cases, the production threshold separates the
continuous and discrete parts of the process
= More on this later

Multiple scattering is also continuous + discrete

16

Avallable Processes

Electromagnetic
= Standard
= |low energy

Hadronic

= pure hadronic

= radioactive decay

= photo- and electro-nuclear

Decay

Optical photon
Parameterization
Transportation

17

Threshold for Secondary Production (1)

= A simulation must impose an energy cut below which
secondaries are not produced

= Avoid infrared divergence

= Save CPU time used to track low energy particles

= But, such a cut may cause imprecise stopping location and
deposition of energy
= Particle dependence

= Range of 10 keV gin Si is a few cm
= Range of 10 keV e- in Si is a few microns

= Inhomogeneous materials

= Pb-scintillator sandwich: if cut OK for Pb, energy deposited in sensitive
scintillator may be wrong

18

Threshold for Secondary Production (2)

Solution: impose a cut in range

= Given a single range cut, Geant4 calculates for all materials the
corresponding energy at which production of secondaries stops

During tracking:
= Particle loses energy by generation of secondaries down to an energy
corresponding to the range cut

= Then the particle is tracked down to zero energy using continuous
energy loss. This part is done in a single step.

The range cut-off represents the accuracy of the stopping
position. It does not mean that the track is killed at that
energy.

19

Threshold for Secondary Production (3)

= Geant4 applies the range cut directly to e, e*, @
= Geant4 default is 1mm
=« User may change it

= What about protons, muons, pions, etc. ?
= Proton, e.g., loses energy by emitting d-rays

= When it can no longer produce a d-ray above the energy
corresponding to the e- range cut, it is tracked to zero

energy by continuous energy loss

20

Physics Lists (1)

This is where the user defines all the physics to be used in his

simulation

First step: derive a class (e.g. MyPhysicsList) from the
G4VUserPhysicsList base class

Next, implement the methods:

= ConstructParticle() - define all necessary particles

= ConstructProcess() - assign physics processes to each particle
= SetCuts() - set the range cuts for secondary production

Register the physics list with the run manager in the main
program

= runManager->SetUserlnitialization(new MyPhysicsList);

21

Physics List (ConstructParticle)

void MyPhysicsList::ConstructParticle()

{

G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4Gamma::GammabDefinition();

G4MuonPlus::MuonPlusDefinition();
G4MuonMinus::MuonMinusDefinition();
G4NeutrinoE: :NeutrinoEDefinition();
G4AntiNeutrinoE: :AntiNeutrinoEDefinition();
G4NeutrinoMu: :NeutrinoMuDefinition();
G4AntiNeutrinoMu::AntiNeutrinoMuDefinition();

22

Physics List
(SetCuts and ConstructProcess)

void MyPhysicsList::SetCuts()
{

defaultCutValue = 1.0*cm; //Geant4 recommends 1 mm
SetCutsWithDefault();

void MyPhysicsList::ConstructProcess()

{
AddTransportation(); //Provided by Geant4
ConstructeEM(); //Not provided by Geant4
ConstructDecay(); /" “ “ “

¥

23

Physics List (ConstructeEM) (1)

void MyPhysicsList::ConstructEM()
{
theParticlelterator->Reset();
while((*theParticlelterator)()) {
G4ParticleDefinition* particle = theParticlelterator->Value();
G4ProcessManager* pm = particle->GetProcessManager();
G4String particleName = particle>GetParticleName();

If (particleName == “gamma”) {
pm—->AddDiscreteProcess(new G4ComptonScattering);
pm->AddDiscreteProcess(new G4GammacConversion);

24

PhysicsList (ConstructeEM) (2)

} else if (particleName == “e-") {
pm—->AddProcess(new G4MultipleScattering, -1, 1, 1);
pm->AddProcess(new G4elonisation, -1, 2, 2);

pm—->AddProcess(new G4eBremsstrahlung, -1,-1, 3);

These are “compound” processes: both discrete and
continuous.

Integers indicate the order in which the process is applied
first column: process is AtRest
second column: process is AlongStep
third column: process is PostStep

25

Physics List (ConstructDecay)

void MyPhysicsList::ConstructDecay()
1

G4Decay* theDecayProcess = new G4Decay();
theParticlelterator->reset();

while((*theParticlelterator)()) {

G4ParticleDefinition* particle = theParticlelterator->value();

G4ProcessManager* pm = particle>GetProcessManager();

If (theDecayProcess—>IsApplicable(*particle)) {
pm->AddProcess(theDecayProcess);

¥
}

} // Note: there is only one decay process for all particles 26

More Physics Lists

= For a complete EM physics list see novice example NO3

= Best way to start
= Modify it according to your needs

= Adding hadronic physics is more involved

= For any one hadronic process, there may be several hadronic models to
choose from (unlike EM)

= Choosing the right models for your application requires care
= Hadronic physics lists are now provided according to use case

= A physics list for a realistic detector can become cumbersome

= Consider deriving from G4VModularPhysicsList

= Has RegisterPhysics method which allows writing “sub” physics lists
(muon physics, ion physics, etc.) »7

Summary

In Geant4 a track is a snapshot of a particle within the context
of a detector. The user decides which particles are useful.

Geant4 supplies many physics processes which the user must
assign to the particles

Processes and geometry determine where and how a particle
Interacts

The precision of particle stopping and the production of
secondary particles are determined by a cut in range

Physics lists are where the user builds particles, processes and

sets range cuts 28

