
Overview of Geant4 Physics

Fermilab Geant4 Tutorial
27-29 October 2003

Dennis Wright (SLAC)

2

Outline

n Particles and Tracks

n Tracking

n Physics Processes

n Production Cuts

n User Physics Lists

3

Particles and Tracks (1)

n What is a particle in Geant4?
n A collection of all the information needed to propagate it through a

material
n Geant4 arranges this information in layers, starting with:

Particle
Simply a definition, no energy, direction, …
Only one instance of each type

Dynamic Particle
Gives the particle its kinematic properties

Track
Places the dynamic particle in context
Snapshot of particle
Not a collection of steps

4

Particles and Tracks (2)

G4Track

G4DynamicParticle

G4ParticleDefinition PDG info: mass, charge, spin,
lifetime, decay table

E, p, polarization, time
pre-assigned decays

Position, volume, track length
TOF, ID of itself and mother

5

Particles and Tracks (3)

n Summing up the previous two slides: a track is a “fully
dressed” particle which at any step along its trajectory
contains the instantaneous particle information

n Track object lifetime
n Created by generator or physics process (such as decay of mother)
n Lives until it

n decays,
n goes out of the world volume,
n goes to zero KE, or
n is killed by the user

n User access to track info
n Many public methods: GetPosition(), GetVolume(), GetMaterial(),

GetCreatorProcess(), GetMomentum(), GetParticleDefinition(), …

6

Particles and Tracks (4)

n Putting particles into your simulation
n Geant4 kernel takes care of creating tracks, but the user needs to

construct all the particle types that will appear in the simulation

n For example, if you need electrons and protons, the following lines
must be included in your code:

G4Electron::ElectronDefinition() ;
G4Proton::ProtonDefinition() ;

n Geant4 provides methods which construct entire classes of particles:
n G4BosonConstructor
n G4LeptonConstructor
n G4MesonConstructor
n G4BaryonConstructor
n G4IonConstructor
n G4ShortlivedConstructor

7

Particles and Tracks (5)

n Particle types available in Geant4 (> 100 by default)
n quarks, diquarks, gluons
n photons
n leptons
n mesons, baryons
n nuclei, ions
n geantinos

n What does Geant4 do with them?
n Stable, long-lived (> 10-14 sec) are tracked
n K0 is immediately redefined as K0

L or K0
S which is tracked until decay

n Short-lived never tracked but decayed immediately

8

Tracking (1)

n How does Geant4 propagate a particle through a detector ? It
must take into account:
n Track/particle properties
n All physical processes
n Volume boundaries
n Electromagnetic fields

n The job is done by G4SteppingManager, with help from:
n G4TrackingManager (gets a track from G4EventManager)
n G4ProcessManager (manages physics processes for each particle type)
n G4Navigator (locates volume boundaries)
n G4Transportation (provides a method for integrating the field equation)

9

Tracking (2)

n The basic element of tracking is the Step

n It consists of two points and the “delta” information of a
particle
n Step length, energy loss during step, change in elapsed time, etc.

n Each point knows which volume it is in
n If step limited by boundary, end point is located on boundary, but it

logically belongs to next volume

Start of step point End of step point

10

Tracking Algorithm (simplified) (1)

n Calculate track velocity

n Each physics process must propose a step length
n Interaction dependent, look up cross section, calculate MFP
n “Physical step length” is the minimum of all proposed lengths

n Navigator finds “safety” distance to nearest boundary

n If physical step length is < safety take physical step length

n If not, step is limited by geometry instead of physics
n Take step to boundary, subtract step length from mean free path of

physics processes

11

Tracking Algorithm (simplified) (2)

n If physics process has limited the step, do the interaction

n Update track properties

n Check for track termination

n If step limited by volume boundary, assign it to next volume

n Invoke G4UserSteppingAction to allow user intervention

n Update processes’ MFP

12

Trajectory

n The Trajectory is a record of a track’s history
n For every step, some information is stored as an object of the

G4Trajectory class

n The user can create his own trajectory class by deriving
from G4VTrajectory and G4VTrajectoryPoint base classes

n WARNING! Storing trajectories for secondaries generated in
a shower may consume large amounts of memory

13

Physics Processes (1)

n All the work of particle decays and interactions is done by
processes
n Transporation is also handled by a process

n A process does two things:
n Decides when and where an interaction will occur

n Method: GetPhysicalInteractionLength()
n Generates the final state (changes momentum, generates secondaries,

etc)
n Method: DoIt()

n The physics of a process may be:
n Well-located in space à PostStep
n Not well-located in space à AlongStep
n Well-located in time à AtRest

14

Physics Processes (2)

n The most general process may invoke all three of the above
actions
n In that case six methods must be implemented

(GetPhysicalInteractionLength() and DoIt() for each action)

n For ease of use, “shortcut” processes are defined which
invoke only one.
n Discrete process (has only PostStep physics)

n Continuous process (has only AlongStep physics)

n AtRest process (has only AtRest physics)

15

Example Processes (1)

n Discrete process: Compton Scattering
n Step determined by cross section, interaction at end of step

(PostStepAction)

n Continuous process: Cerenkov effect
n Photons created along step, # roughly proportional to step length

(AlongStepAction)

n At rest process: positron annihilation at rest
n No displacement, time is the relevant variable

n These are so-called “pure” processes

16

Example Processes (2)

n Continuous + discrete: ionization
n Energy loss is continuous
n Moller/Bhabha scattering and knock-on electrons are discrete

n Continuous + discrete: bremsstrahlung
n Energy loss due to soft photons is continuous
n Hard photon emission is discrete

n In both cases, the production threshold separates the
continuous and discrete parts of the process
n More on this later

n Multiple scattering is also continuous + discrete

17

Available Processes

n Electromagnetic
n standard
n low energy

n Hadronic
n pure hadronic
n radioactive decay
n photo- and electro-nuclear

n Decay
n Optical photon
n Parameterization
n Transportation

18

Threshold for Secondary Production (1)

n A simulation must impose an energy cut below which
secondaries are not produced
n Avoid infrared divergence

n Save CPU time used to track low energy particles

n But, such a cut may cause imprecise stopping location and
deposition of energy
n Particle dependence

n Range of 10 keV γ in Si is a few cm
n Range of 10 keV e- in Si is a few microns

n Inhomogeneous materials
n Pb-scintillator sandwich: if cut OK for Pb, energy deposited in sensitive

scintillator may be wrong

19

Threshold for Secondary Production (2)

n Solution: impose a cut in range
n Given a single range cut, Geant4 calculates for all materials the

corresponding energy at which production of secondaries stops

n During tracking:
n Particle loses energy by generation of secondaries down to an energy

corresponding to the range cut
n Then the particle is tracked down to zero energy using continuous

energy loss. This part is done in a single step.

n The range cut-off represents the accuracy of the stopping
position. It does not mean that the track is killed at that
energy.

20

Threshold for Secondary Production (3)

n Geant4 applies the range cut directly to e-, e+, γ
n Geant4 default is 1mm
n User may change it

n What about protons, muons, pions, etc. ?
n Proton, e.g., loses energy by emitting δ-rays

n When it can no longer produce a δ-ray above the energy
corresponding to the e- range cut, it is tracked to zero
energy by continuous energy loss

21

Physics Lists (1)

n This is where the user defines all the physics to be used in his
simulation

n First step: derive a class (e.g. MyPhysicsList) from the
G4VUserPhysicsList base class

n Next, implement the methods:
n ConstructParticle() - define all necessary particles
n ConstructProcess() - assign physics processes to each particle
n SetCuts() - set the range cuts for secondary production

n Register the physics list with the run manager in the main
program
n runManageràSetUserInitialization(new MyPhysicsList);

22

Physics List (ConstructParticle)

void MyPhysicsList::ConstructParticle()
{

G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4Gamma::GammaDefinition();

G4MuonPlus::MuonPlusDefinition();
G4MuonMinus::MuonMinusDefinition();
G4NeutrinoE::NeutrinoEDefinition();
G4AntiNeutrinoE::AntiNeutrinoEDefinition();
G4NeutrinoMu::NeutrinoMuDefinition();
G4AntiNeutrinoMu::AntiNeutrinoMuDefinition();

}

23

Physics List
(SetCuts and ConstructProcess)

void MyPhysicsList::SetCuts()
{

defaultCutValue = 1.0*cm; //Geant4 recommends 1 mm
SetCutsWithDefault();

}

void MyPhysicsList::ConstructProcess()
{

AddTransportation(); //Provided by Geant4
ConstructEM(); //Not provided by Geant4
ConstructDecay(); // “ “ “ “

}

24

Physics List (ConstructEM) (1)

void MyPhysicsList::ConstructEM()
{

theParticleIteratoràReset();
while((*theParticleIterator)()) {

G4ParticleDefinition* particle = theParticleIteratoràValue();
G4ProcessManager* pm = particleàGetProcessManager();
G4String particleName = particleàGetParticleName();

if (particleName == “gamma”) {
pmàAddDiscreteProcess(new G4ComptonScattering);
pmàAddDiscreteProcess(new G4GammaConversion);

25

PhysicsList (ConstructEM) (2)

} else if (particleName == “e-”) {
pmàAddProcess(new G4MultipleScattering, -1, 1, 1);
pmàAddProcess(new G4eIonisation, -1, 2, 2);
pmàAddProcess(new G4eBremsstrahlung, -1,-1, 3);

These are “compound” processes: both discrete and
continuous.
Integers indicate the order in which the process is applied

first column: process is AtRest
second column: process is AlongStep
third column: process is PostStep

26

Physics List (ConstructDecay)

void MyPhysicsList::ConstructDecay()
{

G4Decay* theDecayProcess = new G4Decay();
theParticleIteratoràreset();

while((*theParticleIterator)()) {
G4ParticleDefinition* particle = theParticleIteratoràvalue();
G4ProcessManager* pm = particleàGetProcessManager();
if (theDecayProcessàIsApplicable(*particle)) {

pmàAddProcess(theDecayProcess);
}

}
} // Note: there is only one decay process for all particles

27

More Physics Lists

n For a complete EM physics list see novice example N03
n Best way to start
n Modify it according to your needs

n Adding hadronic physics is more involved
n For any one hadronic process, there may be several hadronic models to

choose from (unlike EM)
n Choosing the right models for your application requires care
n Hadronic physics lists are now provided according to use case

n A physics list for a realistic detector can become cumbersome
n Consider deriving from G4VModularPhysicsList
n Has RegisterPhysics method which allows writing “sub” physics lists

(muon physics, ion physics, etc.)

28

Summary

n In Geant4 a track is a snapshot of a particle within the context
of a detector. The user decides which particles are useful.

n Geant4 supplies many physics processes which the user must
assign to the particles

n Processes and geometry determine where and how a particle
interacts

n The precision of particle stopping and the production of
secondary particles are determined by a cut in range

n Physics lists are where the user builds particles, processes and
sets range cuts

