Status of the PICASSO Dark Matter Search Experiment

Ubi Wichoski
Laurentian University
for the PICASSO Collaboration
Seitz theory of phase transition of superheated liquids

\[E_{\text{dep}} = \frac{dE}{dx} \cdot R_{\text{crit}} \geq E_{\text{min}} \]

Superheated droplet technique

Liquid-to-vapour phase transition

- **Incoming particle**
- **Liquid Droplet**
- **Nuclear recoil**
- **Gas Bubble**
- **Direct energy deposition**
- **Recoiling nucleus**
- **Shock wave**
The PICASSO Collaboration

Project in Canada to Search for Supersymmetric Objects

Université de Montréal, Canada

B. Lizarraga, K. Clark, X. Dai, C. Krauss, A. Noble, C. Storey

Queens University, Canada

P. Nadeau, U. Wichoski

Laurentian University, Canada

E. Behnke, W. Feigherty, I. Levine, N. VanderWerf

Indiana University South Bend, USA

S. Pospisil, J. Sodomka, I. Stekl

IEAP-Czech Technical University in Prague, Czech Republic

R. Noulty

Bubble Technology Industries, Canada
1) **Polymerized Aqueous Gel Matrix**

Inert Component

Droplet sizes: 5μm to 100 μm

2) **Freon C₄F₁₀ Droplets**

Active Component

Picture taken with a microscope

- Fabrication technique based on the Bubble Detectors produced by *Bubble Technology Industries*

- Modified to customize the detectors for the Dark Matter Search (Larger, Cleaner)

- Gel ingredients: water, acrylamide, bis-acrylamide... **Cesium Chloride** (to equalize densities)

- ~Ambient temperature operation (freon superheated)
Neutralino interaction with matter:

\[
\sigma_A = 4G_F^2 \left(\frac{M_\chi M_A}{M_\chi + M_A} \right)^2 C_A
\]

Enhancement factor

Depending on the type of target nucleus and neutralino composition

Spin independent interaction \((C_A \propto A^2) \)

Spin dependent interaction

\[
C_A = \left(\frac{8}{\pi} \right) (a_p <S_p> + a_n <S_n>)^2 (J+1)/J
\]

\[\lambda \]

Spin of the nucleus is approximately the spin of the unpaired proton or neutron

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Spin</th>
<th>Unpaired</th>
<th>(\lambda^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^7 \text{Li})</td>
<td>3/2</td>
<td>p</td>
<td>0.11</td>
</tr>
<tr>
<td>(^{19} \text{F})</td>
<td>1/2</td>
<td>p</td>
<td>0.863</td>
</tr>
<tr>
<td>(^{23} \text{Na})</td>
<td>3/2</td>
<td>p</td>
<td>0.011</td>
</tr>
<tr>
<td>(^{29} \text{Si})</td>
<td>1/2</td>
<td>n</td>
<td>0.084</td>
</tr>
<tr>
<td>(^{73} \text{Ge})</td>
<td>9/2</td>
<td>n</td>
<td>0.0026</td>
</tr>
<tr>
<td>(^{127} \text{I})</td>
<td>5/2</td>
<td>p</td>
<td>0.0026</td>
</tr>
<tr>
<td>(^{131} \text{Xe})</td>
<td>3/2</td>
<td>n</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

Why \(C_4F_{10} \)? Spin Dependent
Energy Thresholds of the PICASSO Detectors

200 keV neutrons

Neutron beam calibrations

400 keV neutrons

Monte Carlo Simulations

M.H. Genest
Thresholds & Efficiency

Energy Thresholds

Efficiency
Evolution of the energy threshold for 19F recoils (1.23 bar)

Sensitivity to keV recoils
Detector Operation

Operation cycle

Data taking: (> 30h)
Temperature range: ~15 C to ~55 C
Relative pressure: 0 psi

Recompression: (~10h)
Relative pressure: ~ 90 psi

Duty Cycle: ~80%

M.-H Genest

The Hunt for Dark Matter, FermiLab – May 10, 2007
Backgrounds

- **Cosmic ray muons** → induce high energy **neutrons** (E > 10 MeV)

- Radioactivity from the environment **neutrons** → (E < 10 MeV)

- MIPS → Mostly suppressed at the operating temperature range (better than 10^7 at $E_{rec} = 6$ keV)

- **α-particles are the dominant background (for WIMP runs, mainly from CsCl)**

Simulations indicate that the shape of the curve is independent of the droplet distribution and the type of the contaminant

![Response curve from a 238U spiked detector](image)

(Bckg. values: integrated from 6 keV – 1 MeV)
Signal \times Background shape

Neutralino Signal Effect

- α-fit
- α-fit + $M_\chi = 50$ GeV, $\sigma_\chi = 15$ pb
- α-fit + $M_\chi = 50$ GeV, $\sigma_\chi = 5$ pb
- α-fit + $M_\chi = 50$ GeV, $\sigma_\chi = 2$ pb

(Bckg. values: integrated from 6 keV – 1 MeV)
- First experiment at SNOLAB
- 4.5 L Detector Modules: 32
- Total net detector volume: ~ 150 L
- Total active mass (C₄F₁₀): ~ 2.6 kg
- Acoustic channels: 288 (9 channels per detector)
- Expected exposure: ~280 Kg·day (Six-month period)
Improved fabrication Method: The 4.5L detector

1. **Reduction of the internal background:** Cleaner materials

2. **Improved fabrication procedure – Defect-free gel & Homogeneous distribution of droplets**

3. **Reduction of the internal background - Purification of the ingredients**

 (PICASSO Collaboration technology)

<table>
<thead>
<tr>
<th>Exp-ID</th>
<th>PZS50A</th>
<th>PZS50B</th>
<th>PZS50D</th>
<th>PZS60B&C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsCl concentration</td>
<td>50%</td>
<td>50%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>HZrO concentration</td>
<td>2 g Zr/L</td>
<td>0.28 g Zr/L</td>
<td>0.05 g Zr/L</td>
<td>0.13 g Zr/L</td>
</tr>
<tr>
<td>Extraction efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{228}Th</td>
<td>$>99.7%$</td>
<td>$>98.8%$</td>
<td>99.8±0.4%</td>
<td>99.1±1.5%</td>
</tr>
<tr>
<td>^{224}Ra</td>
<td>$>99.6%$</td>
<td>99.2±0.8%</td>
<td>-</td>
<td>97.0±1.2%</td>
</tr>
<tr>
<td>^{226}Ra</td>
<td>$>99.5%$</td>
<td>97.3±1.1%</td>
<td>64.9±3.8%</td>
<td>97.1±0.6%</td>
</tr>
<tr>
<td>^{212}Pb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>96.1±0.8%</td>
</tr>
<tr>
<td>^{212}Bi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>92.8±1.6%</td>
</tr>
</tbody>
</table>

\Rightarrow New method: co-precipitation of Th, Ra and Pb with (HZrO) Hydrous Zirconium Oxide
The greater the droplet’s radius, the smaller the alpha response – for the same active mass ("Geometric Purification")

The response varies like \((R_{\text{droplet}})^{-1} \)

M.-H Genest

Production of the 4.5L detectors

Detector's response to the alpha internal background
Production of the 4.5L detectors

Expected performance of the 4.5L PICASSO detector’s production

→ Droplet Distribution

1-Litre

Active Mass: ~ 7g/L
Loading = 0.5%

4.5-Litre

Active Mass: ~ 19g/L detector
Loading = 1.2%

300 X less background

→ Higher loading
Data taking & Calibrations

- Performance
 - All piezos sensors see individual events
 - No dead regions
 - **Localization of events**

- Switchable on site neutron calibration source

- Optimized data taking strategy

- Optimized filters and signal recognition strategy

- **New beam line for neutron calibration/characterization of the detectors**
Installation @ SNOLab
Conclusions

• PICASSO uses superheated droplets detectors for the direct search of dark matter

• The SDD response to different background sources has been studied extensively

• For the this phase we expect that the increase in mass and purity improve the sensitivity dramatically

• Installation of major infrastructure has been completed and the first four modules are presently taking data (more will be added progressively)

• Data analysis of the first four modules is in progress and results will be available for the end of 2007