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J. NEYMAN 26!

above and thinner below the point (i}, E') of its intersection with the hyperplane
G(),). The confidence interval 3(E") corresponding to another sample point, E*, is not
cut by G{{)}) and is situated entirely above this hyperplane.

Now denole by A(U)) the set of all points «(f;, E) in G{0;) in which this hypcrphn
cuts one or the other of the confidence intervals 8(E), corresponding to any sampic poist.
It is casily scen that the coordinate #, of any point belonging to A(t))) is equal to 0, and
that the remaining coordinates x,, X3, ... x, satisfy the inequalities

BE) < 0, < KE). 4

Fig. 1. The general space G.

In many particular problems it is found that the set of points A(0,) thus defined is °
filling up a region. Because of this A(8,) will be called the region of acceptance corres-
ponding to the fixed value of 8, = 0. §

It may not seem obvious that the region of acceptance A(?,) as defined above must :
cxist (contain poeints) for any value of 8,. In fact, it may seem possible that for certain -
values of {#, the hyperplane G(0,) may not cut any of the mlervals &(E). It will, however.
be seen below that this is impossible. ’

As mentioned above, the coordinates x,, X3, ... x, of any sample point E determine in
the space G the siraight line L(E) parallel to the axis of 0, . If this linc crosses the hyper-
plane G(f},) in a point belonging to A(),} it will be convenient to say that E falls within
AWD,).

If for a given sample point E the lower and the upper estimates satisfy the incqualitics
(E) < 0, < (E), where 0, is any valuc of 0,, then it will be convenient lo describe the
situation by saying that the confidence interval 8(E) covers 0, . This will be denoted by
N EYCO,.

The conception and properties of the regions of acceptance are exceedingly importaal
from the pomt of view of the theory given below, We shall thercfore discuss them ik
detail proving separately a few propositions, however simple they may scem to be.
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/ ORDERWE ePriNc\TLE CXAMEe LE
/ NEAN BACKGROUND b= 3.0
/ SLENAL  tNEAan = Q.5 :
/ FIND (M, N %wew tanr P (N ‘C"nﬂg\\: Q.

TABLES

0 0.030 0.050 0.607 3
1 0.106 0. 0.149 0.708 5 v v
2 0.185 0. 0.224 0.826 3 v v
3 0.216 0. 0.224 0.963 2 v v
4 0.189 1. 0.195 0.966 1 v v
5 0.132 2. 0.175 0.753 4 v v
6 0.077 3. 0.161 0.480 7 v v
7 0.039 4. 0.149 0.259 v v
8 0.017 s. 0.140 0.121 v

9 0.007 6. 0.132 0.050 v

10 0.002 7. 0.128 0.018 Vv
11 0.001 8. 0.119 0.006 v
\

ForR AW N, ®Nbd Mol = "REST €17 m =

Mbtssy = MAX (\0, N"L\;

LET = Q(N\r\\

y ORDER utiNe
9-““‘[“&:\-\
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FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
cmﬁdenceinmﬂs(verﬁculinm:lsbetwemmebelts)quotedby
flip-flopping physicist X, described in the text. They are not valid
wnﬁdmccbdts,sincclheymcommemvﬂunaﬁequmy
less than the stated confidence level. For 1.36<u<4.28, the cov-
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FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.
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CouSRAGE In PRACTICE
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| | . Table 8.5

! Asymptotic efficiencies of location estimators
| . le le
Distribut;o.n mSsz;? Sl;‘a?an m$?inrlpange
. Normal 0.64 1.00 0.00
-i 1 tniform 0.00 | 0.00 1.00
Cauchy 0.82 | 0.00 | 0.00
' Double-exponential | 1.00 0.50 0.00

(For asymptotic variances, see Table 8.6)
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F1g 8.3 Asymptot:.c efflclenc:les of trimmed and Winsorized means for normal (N),
double—exponentlal (DE) and Cauchy {C) distributions .
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" B. EFRON*

Originally a talk delivered at a conference on Bayesian
statistics, this article attempes to answer the following ques-
tion: why is most scientific data analysis carried out in a
non-Bayesian framework? The argument coasists mainly of
some practical exampiles of data analysis, in which the Bayes-
ian approach is difficult but Fisherian/frequentist solutions
are reiatively easy. There is a brief discussion of objectivity
in statistical analyses and of the difficultjes of achievin
objectivity within a Bayesian framework {The arucie ¢
WItR a lisCSY Practcal advantages of Fisherian/frequenti
methods, which so far seem to have ourweighed the philo-
sophical superiority of Bayesianism.

KEY WORDS: Fisherian inference: Frequentist theory;
Neyman—Pearson—-Wald; Objectivity.

1.

The title is 2

INTRODUCTION

Why Isn’t Everyone a Bayesian?

3. FISHERIAN STATISTICS

In its inferential aspects Fishenian statistics lies closer 10
Bayes than to NPW in one crucisl way: the assumption that
there is a correct inference in any given situation. For ex-
ample. if x), x5, . . . , Xayis 2 random sampie from a Cauchy
distribution with unknown center 4,

_ 1
T oAl + o, - @

then in the absence of prior knowledge about 8 the correct
95% central confidence interval for 8 is, 1o a good approx-
imation,

jAsA)

f:::l':m‘:“nf The title s a reasonable question to ask on at least two

ence probie counts. First of all, everyone used to be a Bayesnan Laplace [ is not comeat
suit, This i wholeheartedly endorsed Bayes's formulation of the infer- . For any givea
o : reduction O an

ence problem, and most 19th-century scientists followed

A secor . . ; .
Bayesian suit. This included Gauss, whose statistical work is usually ::z"in‘:’"“‘“
f’ff‘i" presented in frequentist terms. model
of ﬂ,,':a A second and more important point is the cogency of the 0

the fre Bayesian argument. Modem statisticians, following the lead h reductions
cmNi: of Sava i i haxe.ad!anﬁs‘&_lzowerful theoret- Fbutlops. and
used ical re or ing Bayesian inferenge. A byproduct m"gi‘::'ﬁ:':
ﬁ:’: of this work is a disturbing catalogue of inconsistencies in supetseded an
e the frequentist point of view. “)m's method
. . 5.
Nevertheless, everyone is not a Bayesian. The current rried out in a
Th era is the first century in which statistics has been widely natic nature of
of two  used for scientific reporting, and in fact, 20th-century sta- g o0 is the one-
Kiefert . e ] . . . Iy applicable and
decision v tistics is mainly non-Bayesian. [Lindley (1975) predicts a4 .ion. the working
frequentists change for the 21st!] What has happened? 2od in an automa
markable degrex: . P enced Rands) of going
1920 and 1935. NPW began - ———Tleoie chance of providing a neariy

1933, asymptoting in the 1950s, though there have contin- opum:l inference. in short, he does not have to think a lot

ued to be significant advances such as Siein estimation,
empirical Bayes, and robustness theory.

Working together in rather uneasy aliiance. Fisher and
NPW dominate current theory and practice, with Fisherian
ideas particularty prevalent in applied statistics. [ am going
to try to explain why.

*B. Efron is Professor, Depanment of Statistics, Swndord University.
Stanford, CA 94305, .
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about the specific situation in order to get on toward iis
solution.

Bayesian theory requires a great deal of thought about
the given situation to apply sensibly. This is seen clearly in
the efforts of Novick (1973), Kadane, Dickey. Winkler,
Smith, and Peters (1980). and many others to at least par-
tially automate Bayesian inference. All of this thinking is
admirable in principle. but not necessarily in day-to-day
practice. The same objection applies to some aspects of
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A 236-year-old approach to statistics is making a [| ComputersMathematics

comeback, as its ability to factor in hunches as well as
hard data finds applications from pharmaceuticals to fisheries

After 15 years, environmental researcher Kenneth Reckhow can still feel the sting of rejection. As a
young scientist appearing before an Environmental Protection Agency review panel, Reckhow was

eager to discuss his idea for using an unorthodox statistical approach in a water-quality study. But before
he could say a word, an influential member of the panel unleashed a rhetorical attack that stopped him
cold. "As far as he was concerned, I was a Bayesian, and Bayesijan statistics were worthless," recalls
Reckhow, now at Duke University in Durham, North Carolina. "The idea was dead before 1 even got to

Spea.k' "
Reckhow is no longer an academic outcast. And the statistical approach he favors, named after an 18th

century Presbyterian minister, Thotnas Bayes, now receives a much warmer reception from the scientific
establishment. Indeed, Bayesian statistics, which allows researchers to use everything from hunches to
hard data to compute the probability that a hypothesis is correct, is experiencing a renaissance in fields
of science ranging from astrophysics to genomics and in real-world applications such as testing new
drugs and setting catch limits for fish. The long-dead minister is also weighing in on lawsuits and public
policy decisions (see p. 1462}, and is even making an appearance in consumer products. It is his ghost,
for instance, that animates the perky paperclip that pops up on the screens of computers running
Microsoft Office software, makmg Bayesian guesses about what advice the user might need. "We’re in
the midst of a Bayesian boom," says statistician John Geweke of the University of Iowa, Jowa City.

Advances in computers and the limitations of traditional statistical methods are part of the reason for the
new popularity of this old approach. But researchers say the Bayesian approach is also appealing
because it allows them to factor expertise and prior knowledge into their computations--something that
traditional methods frown upon. In addition, advocates say it produces answers that are easier to
understand and forces users to be explicit about biases obscured by reigning "frequentist" approaches.

To be sure, Bayesian proponents say the approach is no panacea--and the technique has detractors. Some
researchers fear that because Bayesian analysis can take into account prior opinion, it could spawn less
objective evaluations of experimental results. “The problem is that prior beliefs can be just plain wrong"



might bias the results.

Such prior information can be very helpful to researchers trying to discern patterns in massive data sets
of in problems where many variables may be influencing an observed result. Lamry Bretthorst of
Washington University in St. Louis, Missouri, for instance, developed Bayesian software that improved
the resolution of nuclear magnetic resonance (NMR) spectrurn data—-used by chemists to figure out the
structure of molecules--by several orders of magnitude. It uses prior knowledge about existing NMR
spectra to clanify confusing data, yielding resolution improvements that were "so startling that other
researchers had a hard time believing he hadn’t made a mistake," says Kevin Van Hom, an independent
computer scientist in American Fork, Utah.

Genomics researchers have also become converts. "You just say ’ ian,’ and le think you are
some kind of genius,” says statistician Gary Churchill of The Jackson Laboratory in Bar Harbor, Maine,
who is working on ways to analyze the flood of data produced by DNA sequencing and gene expression
research. Some researchers, for instance, are using what they already know about a DNA sequence to
identify other sequences that have a high probability of coding for proteins that have similar functions or
structures, notes Jun Liu, a statistician at Stanford University in Palo Alto, California. *"No easy
frequentist method can achieve this," he says. Similarly, “Bayesian has become the method of choice"” in
many astrophysics studies, says astrophysicj 0 Upiversity in Ithaca, New York.
The approach has allowed users to discern weak stellar signal patterns amid cosmic background noise
and take a crack at estimating the locations and strengths of mysterious gamma ray bursts.

Lifesaving statistics?

In other fields, such as drug and medical device trials, Bayesian methods could have practical
advantages, say advocates. Indeed, at a 2-day conference last year, the Food and Drug Administration
(FDA) office that approves new devices strongly urged manufacturers to adopt Bayesian approaches,
arguing that they can speed decisions and reduce costs by making trials smaller and faster.

Telba Irony, one of two Bayesian statisticians recently hired by the division, says the savings flow from
two advantages of the Bayesian approach—the ability to use findings from prior trials and flexibility in
reviewing results while the trial is still running. Whereas frequentist methods require trials to reach a
prespecified sample size before stopping, Bayesian techniques allow statisticians to pause and review a
trial to determine--based on prior experience—the probability that adding more patients will appreciably
change the outcome. "You should be able to stop some trials early," she says. So far, just a handful of
the 27,000 device firms regulated by FDA have taken advantage of the approach. But FDA
biostatistician Larry Kessler hopes that up to 5% of device trials will be at least partly Bayesian within a
few years. "We're not going to change the statistical paradigm overnight,” he says. "There is still a
healthy degree of skepticism out there."

Such skepticism has also limited the use of Bayesian approaches in advanced drug trials, a potentially
much bigger arena. But a team led by M. D. Anderson’s Berry and researchers at Pfizer Inc.’s central
research center in Sandwich, England, is about to challenge that taboo. Next June, using a heavily
Bayesian study design, the company plans to begin human trials aimed at finding the safest effective
dose of an experimental stroke drug designed to limit damage to the brain. The trial--called a phase 11
dose ranging trial--will help the company decide whether to move the drug into final testing trials.
"There are huge economic consequences on the line," says Pfizer statistician Andy Grieve,

The team believes that Bayesian methods will allow the company to reach conclusions using 30% fcwer



The Return of the Prodigal:
Bayesian Inference For Astrophysics

THOMAS J. LOREDO

Department of Astronomy, Space Sciences Building,
Cornell University, Ithaca, New York 14853

= ABSTRACT

Astronomers are skeptical of statistical analyses, the more so the more sophisticated they are. This
has been true especially of Bayesian methods, despite the fact that such methods largely originated
in the astronomical analyses of Laplace and his contemporaries in the early 1800s. I argue here
that astronomers hold statistics in low regard because many astronompers istici
Further, I argue that astronomers are poor statisticians because the frequentist methods they use
have characteristics that invite statistical sloppiness when they are used by nonexperts. The Bayesian
approach to statistical inference does not share these characteristics; adoption of Bayesian methods
by astr rs_thus promises to jmprove statistical practice in astronomy. I present a simplified
discussion of some of the issues arising in the recent an ysis of an important astrophysical data
set—that provided by the Cosmic Background Explorer satellite—to illustrate some of the practical
advantages of a Bayesian outlook. I offer some advice on how to educate astronomers about Bayesian
methods. I conclude with a brief survey of recent applications of Bayesian methods to the analysis
of astrophysical data. The breadth and number of these applications may well indicate that the
time for Bayesian methods to return to the field of their origin has arrived.

1. INTRODUCTION

One could claim without too much exaggeration that statistical inference was invented because
of astronomy. As noted by Stigler (1986), problems associated with reconciling discrepant cbser-
vations in astronomy and geodesy motivated such legendary mathematicians and astronomers as
Legendre, Laplace, and Gauss to develop the foundations of statistical inference based on probabil-
ity theory. Their analyses of astronomical and geodetic preblems led to such notions as the use of
means to reduce uncertainty, the method of least squares, the normal distribution, the central limit
theorem, and the “method of inverse probability” (inference using Bayes’s theorem). Their work
was essentially Bayesian in outlook; and the first mature treatise on statistical inference—Laplace’s
Theorie Analytigue des Probabilités (Laplace 1812)—could fairly be called a Bayesian monograph.

Viewed from the present, this aspect of the early history of statistical inference is doubly ironic.
First, contemporary astronomers (and physical scientists more generally) seldom receive any formal

. training in statistics, and frequently display a skepticism of sophisticated statistical analysis that
borders on disdain. Second, until very recently, Bayesian methods in particular have been poorly
understood and unwelcome tools among physical scientists. This has been true despite the fact that
the most influential and practical Bayesian text of the, first half of this century was written by a
geologist and astronomer, Sir Harold Jeffreys (Jeffreys 1939).

THE BAYSSTAN STATISTICIANS A TTHIS CoN Ferense
RePLieD THAT /N ORDSE To UsE BAYESIAN eTHOdS
CoRRECTLY | You. ALSO HAVE TO Kiow) WHAT ‘Yol g 2oini€
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Understanding Data Better with Bayesian
and Global Statistical Methods

William H. Press
Harvard-Smithsonian Center for Astrophysics

April 16, 1996

Abstract

To understand their data better, astronomers need to use statis-
tical tools that are more advanced than traditional “freshman lab”
statistics. As an illustration, the problem of combining apparently in-
compatible measurements of a quantity (the Hubble constant, e.g.) is
presented from both the traditional, and a more sophisticated Bayesian,

" perspective. Explicit formulas are given for both treatments.

1 Introduction

Understanding data better is alwaeys an unsolved problem in astrophysics,
although perhaps not in exactly the sense intended by the conference &ga-
nizers. While other papers in this volume are more specifically directed at
individual sub-areas of astrophysical theory, my contribution is intentiomally
more longitudinal: T hope that it is applicable to all the other areas surveyed.

If the spirit of this volume is to present a menu — a movable feast, indeed
— of opportunities for thesis projects of smart second-year graduate students,
then the opportunity that I would like to offer is one of voluntary self-chaice:

Whatever your choice of a.rea= ma.ke the choice to live your professionall life

at a high level of statisti i , and not at ve] — baswally
freshman lab Jevel - that is the unfortunate commeon currency of most as-

tronomers. Thereby will we all move forward together.



l : | _St‘a'tistical Analysis a‘nd '
the Illusion of Objectivity

" James O. Berger
Donald A. Berry

_n many scientific journals, statistical analysis is used to
jve the seal of objectivity to conclusions. Yet this
eneral perception of the objectivity of statistics, and
rerhaps of science in general, may be misguided. Let us
e careful here; objectivity is a loaded word, and the next
vorst thing to being a fraud is to be “nonobjective.” We
ire not going to discuss the manner in which a scientist
arives to obtain objective evidence. Rather, we will
fiscuss whether or not it is possible to arrive at an
sbjective conclusion based on data from an experiment.
Ne grant that objective data can be .

standard methods depend on the intentions of "the
investigator, including intentions about data that might
have been obtained but were not. This kind of subjectiv-
ity is doubly dangerous. First, it is hidden; few research-
ers realize how subjective standard methods really are.
Second, the subjective input arises from the producer
rather than the consumer of the data—from the investi-
gator rather than the individual scientist who reads or is
teld the results of the experiment.

This article is an introduction to one side of 2 long
and ongoing fundamental debate in

sbtained, but we will argue that
-eaching sensible condusions from
statistical analysis of these data may
*equire subjective input. '

This conclusion is in no way
harmful or demeaning to statistical
analysis. Far from it; to acknowledge
the subjectivity inherent in the inter-
pretation of data is to recognize the
central role of statistical analysis as a
formal mechanism by which new ev-

Acknowledging the role
of subjectivity in the
interpretation of data  Baves

could open the way for

more accurate and flexible
statistical judgments

statistics between the subjectivists, or
Bayesians, and the nonsubjectivists.
The Bayesian school of statistics is
named after the Reverend Thomas
, who proposed the basic ideas
in 1763 (I). The opposing school is
actually many schools going by dif-
ferent names; we will use “standard
statistics” as a generic name. If vou
have a passing familiarity with statis-
tical ideas, thev are almost certainly

idence can be integrated with exist- .

ing knowledge. Such a view of statistics as a dynamic

discipline is far from the common perception of a rather

dry, automatic technology for processing data.
Acknowledging the subjectivity of statistical analy-

sis would be healthy for sdence as a whole for at least

two reasons. The first is that the straightforward meth-

ods of subjective statistical analysis, called Bayesian
analysis, yield answers which are much easier to under-
stand than standard statistical answers, and hence much
less likely to be misinterpreted. This will be dramatically
dlustrated in our first example.

The second reason is that even standard statistical
methods turmn out to be based on subjective input—input
uf a type that science should seek to avoid. In particular,

{ames Berger is the Richard M. Brumfield Distinguished Professor of
Statistics at Purdue University. He received hiis Ph.D. in mathematics-from
Cornell University in 1974, and has taught at Purduc since then. His
rescarch inferests include Bayesian statistics and decision theory. Donald

rry is Professor and Chairman of the Department of Theoretical Statistics
at the University of Minnesota. He received his Ph.D. in statistics from Yale
University in 1971, and began his appointment at the University of
wMuesota in that year. His research focuses on Bayesian inference.
sopuential decision making, and their application to medical problems.
Athtress for Dr. Berger. Statistics Departrent, Purdire Linfversity. West
Lafayette, IN 47907, ]

. common

what we call standard.

' The debate involves a number of issues in addition
to that of subjectivity. A closely related concem is
“conditioning” {2). Simply put, conditionalists (includ-
ing Bayesians) feel that only the actual data are relevant’

_to the inferences drawn from an experiment; in standard

statistics, as suggested above, the thoughts of the inves-
tigator about data that might have been observed but
were not are also deemed relevant. This important issue
and its ramifications will be clarified as we proceed.

In many—perhaps most—statistical applications,
the various approaches will give very similar answers.
There are at least two kinds of situations, however, in
which major differences of interpretation arise. The first
is the testing of precise hypotheses, such as scientitic
theories, and the second is the analysis of accumulating
data, commonly encountered in clinical trials. We will
give an example of each type. '

- Testing a precise hypothesis

Let us start with a simple example of testing a precise
hypothesis. Suppose an experiment is conducted to
study the effectiveness of vitamin C in treating the
Id, and that standard statistical analysis finds
“significant evidence at the 0.05 level” that vitamin C has
an effect. Such statements conceming statistical signifi-
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Irreconcilability
JAMES O. BERGER and THOMAS SELLKE*

Testing a Point Null Hypothesis: The”

O

f P Values and Evidence

3

2

-~

The problem of testing a point nul! hypothesis (or a “small interval” oull
hypothesis) is considered. Of interest is the relationship between the P
value (or observed significance level) and conditional and Bayesian mea-
sures of evidence against the null hypothesis. Although one might pre-
sume that a small P value indicates the presence of strong evidence
against the pull, such is not necessarily the case, Expanding on earlier
work [especially Edwards, Lindman, and Savage (1963) and Dickey ( 1977)),
it is shown that actual evidence against a null (35 mecasured, say, by
posterior probability or comparative likelibood) cap differ by an order
of magnicude from the P value. For instance, data that yield 2 P value
of .05, when testing 2 normal mean, resait in a posterior probability of
the null of af least 3D for any objective prior distribution, (“Objec-
tive™ here means that equal prior weight is gtven the two hypotheses and
that the prior is symmetric and nhonincreasing away from the oull; other
definitions of “objective” wiil be seen to yield qualitatively similar re-
sults.) The overall conclusion ic that P values can be highly mislcading
measures of the evidence provided by the data against the nuil hypothesis,
KEY WORDS: P values; Point nul! hypothesis; Bayes factor; Posterior
probability; Weighted likelibood ratio. .

1. INTRODUCTION

We consider the simple situation of observing a random
quantity X having density (for convenience) f(x | 8), 8
being an unknown parameter assuming values in a param-
cter space © C R'. It is desired-to test the nuil hypothesis
H, : 8 = 8, versus the altémative hypothesis H, : § = 8,
where 6, is a specified value of & corresponding to a fairly
sharply defined hypothesis being tested. (Although exact
point null hypotheses rarely occur, many “small interval”
hypotheses can be realistically approximated by point nulls;
this issue is discussed in Sec. 4.) Suppose that a classical
test would be based on consideration of some test statistic
T(X), where large values of T(X) cast doubt on Ho. The
P value (or observed significance level) of observed data,
x, is then ' . ’

P = PI.'.-,.(T(X] = T(x)).
Exampie 1. Supﬁose that X' = (X,, ..., X,), where

the X; are iid M(F, ¢?), o known. Then the usual test .

statistic is
T(X) = Va[X - 6f/a,
where X is the sample mean, and )
| P =201 - &),
where & is the standard normal cdf and
t=T(x) = Valx - gl/c.

We will presume that the classical approach is the report
of p, rather than the report of a {pre-experimentai) Ney-

" James Q. Berger is the Richard M. Brumfield Distinguished Pro-
fessor and Thomas Sellke is Assistant Professor, Department of Statistics,
Purdue University, West Lafayette, IN 47907. Research was supported
by National Science Foundation Granr DMS-8401996. The anthors are
gratefut to L. Mark Berliner, Tain Johnstone, Robest Keener, Prem Puri,
and Herman Rubin for suggestions or interesting arguments.

man—Pearson error probabflity. This is because {a) most

statisticians prefer use of P values, feeling it to be impor-
tant to indicate how strong the evidence against H, is (see
Kiefer 1977), and (b) the alternative measures of evidence
we consider are based on knowied
[For a comparison of Neyman—Pearson error
and Bayesian answers, sce Dickey {1977).]
There are several well-known criticisms of testing a point
oull hypothesis. One is the issue of “statistical” versus
“practical” significance, that one can get a very small p
even when |8 — 8y} is so small as to make § equivalent to
0, for practical purposes. [This issue dates back at least to
Berkson (1938, 1942); see also Good (1983),
Lehmann (1954), and Solo (1984) for discussion and his-
tory.] Also well known is “Jeffreys's
ley’s paradox,” whereby for a Bayesian analysis with a
fixed prior and for values of £ chosen to yield a given fixed

probabilities

ge of x for r = T(x)). :

Hodges and %

paradox’ or “Lind- -

]

;
'_!.3_'.
by
E

e

P, the posterior probability of H, goes to 1.4s the sample 3

size increases. {A few references are Good (1983), Jeffreys
(1961), Lindley (1957),
criticisms are dependent on large sample sizes and (1o
some extent) on the assumption that it is plausible for 4
to equal &, exactly (more on this later). _ -

The issue we wish to discuss has nothing to do (neces-

sarily) with large sample sizes for even exact point nulls

(although large sample sizes do tend to exacerbate the
conflict, the Jeffreys-Lindley paradox being the extreme
illustration thereof). The issue is simply that p gives a very
misleading impression as to the validity of H,, from almost
any evidentiary viewpoint. :

_ Example 1 (Jeffreys’s Bayesian Analysis). Consider a
Bayesian who chooses the prior distribution on &, which
gives probability  each to H, and H, and spreads the mass
out on H, according to an (6, o) density. [This prior
is close to that recommended by Jeffreys (1961} for testing

this choice of prior here. Particularly troubling is the choice

of the scale factor o for the prior on H,, though it can be -

argued to at least provide the right “scale.” See Berger

(1985) for discussion and references.] It will be seen in

Section 2 that the posterior probability, Pr(H, | x), of Hy

is given by

Pr(Ho | x) = (1 + (1 + )~ explesf2(1 + Um))-,
(1.1)

. some values of which are given in Table 1 for various 1
and 7 (the £ being chosen to correspond to the indicated

© 1987 Americon Slatistical Association
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a point null, though he actually recommended a Cauchy -:
form for the prior on H,. We do not attempt to defend !

%
i

and Shafer (1982).] Both of these 2
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ng:has a so
and statistical theories,

ound foundation in logic and provides a unified approach to the’
uniike its main rivals, -

heumerecugnmdalsoasthehmofol:ge&
!i'"ly"’: ’ ok ; or: i .

. '|: chanbe. Chance turns out to play an essential

txt: | role in modem scieace, in the theory of stat-

- Our concern-here is with the older idea of

"} probabylity as the foundstioti of a theory of

uncertainty. We shall show how some niod-

| they:enable us 1o see the riles of the prob-

ability caloilos as a-logic of inductive in-
ference. Suppose b is. some scientific hypo-

" | sively prove that his trie, even if it s true. So

you are never-absolutely costain of b's truth,

‘consists in assessing the degree of cortainty
w;mwdbyd:eevidmo&Toﬂ:ehcitsqi

jties? Thereisno paradox bere. Your degrees
. iof belief may be ‘personal to you, but it does

where that probability is positive: in symbols,
Pb 1) = P(hd') / A(R), where Ah) > 0.
Mathematical probability theory began
_ﬁfeasthooryof:meeﬂainty.Bminﬂ:ehte
pinetcenth ceptury the probability axioms
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cipled or ansrchic — in the first place, they
fnustsatisly the axioms of probability. Of the

| Raimiey-and ‘Brino-de Finetti, ‘who dis-

1} independently in-the 19205 and

partyagrecsfoexchange withthe otherasum
'pSfoi the chance of receiving .S if h-is true

| and fothing if his false. Sis 3 pon-zero sum
| are: §<pS if b is truc and ~pS if b is false

payofis to the firse party thus

‘(ﬂxe-pa'ydﬁsmﬂ:eothapanymofm
tract is tantamotint to a bet in which the first
party s betting oo h at odds PpS:(5-pS), that
is, 0dds pr{1-p). It is casy to sec that pis the
quantity obtained
through the transformation p = odds/
(1 + odds), we introduced earlier. There we
called p a probability, but so as not to
prejudice matters we shall now call it the bet-
ting quotient associated with the odds.

Supposc pis such that you deem the odds

i h.-l. i .‘:._s_ :“h 'I“_ '=a‘_ .I I, _‘I] illcll:l t. mﬂtk

by symmetrizing the odds

."p:(lr—p)f_nir,hthesedécthattotﬁébeﬁ'of‘

¢ there is no advantage to tak-

your ¢
.ing cither side of the bei It is customary to~

idenitify this value of p with your degree of
belickin h. Now consider some arbitrary fi-
nite set of hypotheses b, where p, are your
h,.Abuﬁq;mwgywithrupdctptheh.isa -
set of decisions of the form “bet on (against)
b.', foreach i Ramsey and de Finetti showed

-that i the p.do not satisfy the probability

aﬂo-,mmuemmslmdabdﬁng
strategy for the b, which must result in a cer-
tain loss for whoever foliows that strategy
{suih a set of stakes is kmown as a Dutch
book). Hence you cannot consistently main-
tain that the p are all fair if they do.not satisfy

’Proo_f _ - . .
'Ihepoofoflhekmserdeﬁndﬁn‘:ﬂt

{asc so more than high-schiol algebra. Con-
sideraziom 2 of the probability calculus, that
F[t]-littisaneousaryuuth.Supposeﬂut
p= Kt)is greater than 1. Because t is necess-
ari_lyuuedwbatorontwﬂ]makeagnmu-
teed Boss of Sp— 5. If pis less than 1 then the
bmapimttwillmakcng:m:ntoodlosof
S5-Sp. Either way onc party or the othex is
to bose, and so no value for p
otherthan 1 canbe fair. Itis equally simple to
sec why F(b) must be non-negative, wheré h
is smy hypothesis, and only slightly loss
straightforward to see how 1o justify the
remaining two axioms of the probability
abilify axioms is Bayes's theorem, which has
givem ifs name to-this approach. Thomas
‘Bayes (1702-1761) was an English Noa-
conformist clergyman, a gifted mathemati-
cias,; and 2 fellow of the Royal Society. His
semimal work on probability is contained in
in1763. - -
- Bayess theorem says that, for any prop-
ositiops h and e . ' '
‘Fleth

PO = TRe)

In the usual applications of the theorem, h is
SOme is and ¢ the evidence against
which it is to be evaluated. Ahle) is the
posterior probability of h on ¢, F(h) is the
prixprobnbilityofh,and}’(elh)isd:e
likelihood of b on €. Equation 1 can be
rewriticn as:

Phic) = P(eib)A(h)

(1)

That is, posterior probability is proportional
an



" commenmy

csis | Joctive. But what does it say? It might be im-

s -fied. But suppose cach time he selected a per-

| sample means against probability densitics,
| not probabilities. The important fact for the
-| present. discussion is that the probability
| that m lies between two points-is propor-
| tional to the ares enclosed by them and the
:} curve. . Bocause - the - distribution - is nor-
mal; it follows: that with probability 0.05,
=19653 p~ m $-1.965. Rearranging these
-ability 0.95, m —1.96s & p S m+1.96x

| Suppose m’ is the value of /m that is actually
| “obscrved in the experimental sample. Thea,

+[~ because we know ¢ and n, the terms m' |

" #1.965and '+ 1.963 can be détarmined;
% ‘ﬂlcinmﬁetwmﬂ:anispil!ui-a”pa
] statisticians regard such &n interval as a rea-
- The statement that such-znd-sach is a 95-
pe'mmcnﬁﬁdmceinmrvﬂhgmob-

fi--|. aginéd that a 95 per cent confidence interval
- corresponds 1o a 0.95 probability that the

 Theyooversaywhy. . - -
- In fact, there is a decisive reason why not. .

. probabilities of afl the sampie means that you
- might have got in the experiment. It is usual
10 assume that all those possible
have the same size as the actual sample. This
- assumption is crocial, because the shape of
-{ confidence interval, is affected by that size.
' Now. the set of possible samples is deter-
mined by the experimenter's inteation, ¥ he
- | :had delibérately set out to sample exactly. #
~ | people, the nsual assumption would be justi-

- | son from the population, be also tossed a fair
- coin; and that be planned to stop sampling as
;| “soon as'the coin had produced 5 heads; or
‘suppose the plan was simply to cxamine as
- many people as possible before lunch, or be-
the experimenter might still have arrived ata
“sdmple of i, but the set of possible samples
~would bave been different, and- hence, so
of confidence we are invited to place in an
estimatr inevitably depends on the private
plans of the experimenter, which is surely
immensely counterintuitive.
* This is the so-called stopping-rule prob-
lem. It also affects significance tests. In our
cirlier example, it was assumed, as it nor-
mally would be, that because the coin was
tossed 20 times, all the of possible outcomes
would exhibit 20 heads and/or tails, But
these are the possible outcomes only if the

the imenter’s ol

 Unbike these

experimenter had a premeditated plan to

throv the frdes Wi timec Kad tha nton haen 4

peared, be could have. got just the resilt he-
did, but with a different list of vmrealized, -
possible outcomes. -Because significance is
calculated by reference to thesc possibilities,
.2 result could be significant if the ex-.-
'perimenter had had one plan (ot stopping”
rule) in mind, but not significant if it was

'I'hischq:mda:ced.ﬁgmﬁmnce: ificance tests and j

lluslon’ :
Popper’s corroboration idea, and the the-
ovies of significance tests and confidence in-

con-

] ‘let alone 95 per cent’s worth, to an
jective method

logics, the bayesian approach bas a solid

i ﬁuundanon.hprovideslmiﬁeda.pwoﬂto'

questions of testing and estimation, wmliks
the many ad hoc recipes of the classical ap-
.proach. It is also intuitively right. We can il-
lustrate this by sketching the bayesian wayof
estimating a popuilation mean. It starts with a
distribution of subjective prior probabilities
mﬂ:cnngeofpodblevﬂuesofﬁmpar-‘
ameter, Then, using Bayes's theorem and the
sampkgvidenoe,amresponcﬁng‘posm
. prior

tainty about the parameter value, whereas
the posterior probability would be concen-
trated in & narrow region. Then if 95 per cent
of the area under the curve was enclosed be-
tween two points a and b, the bayesian esti-
mate of the parameter would be of the form
‘pelies between a and bwith probability 0.95".

This ian conclusion has a clear
meaning and is just the kind of conclusion
peopie do come to. It is derived from the
mean of the experimental sample alone, not
the means of possible samples. Hence, it is
unaffected by the experimenter's subjec-
tively intended stopping rule, which is as it
should be. Finally, the posterior distribution

I vary incancition b smeintiaee e tha el
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