CDMS Limits and Compatibility with DAMA

(for CDMS results see PRL preprint astro-ph/0002471)

Richard Schnee
Case Western Reserve University

CDMS Collaboration

Case Western Reserve University

D.S. Akerib, A. Bolozdynya, D. Driscoll, T.A. Perera, R.W. Schnee, G.Wang

Fermi National Accelerator Laboratory

M.B. Crisler, R. Dixon, D. Holmgren, S. Eichblatt

Lawrence Berkeley National Laboratory

E.E. Haller, R.J. McDonald, R.R. Ross, A. Smith

National Institute of Standards and Technology

K.D. Irwin, J. Martinis, S.W. Nam

Princeton University

T. Shutt

Santa Clara University

B.A. Young

Stanford University

P.L. Brink, B. Cabrer a, C. Chang, R.M. Clarke, A.K. Davies, T. Saab

University of California, Berkeley

R.J. Gaitskell, <u>S.R. Golwala</u>, J. Hellmig, V. Mandic, P. Meunier, M. Perillo Isaac, <u>B. Sadoule</u>t, A.L. Spadafora

University of California, Santa Barbara

D.A. Bauer, R. Bunker, D.O. Caldwell, H. Nelson, A.H. Sonnenschein, S. Yellin

University of Colorado at Denver

M. E. Huber

(Feb00 ALS)

Quick Orientation to CDMS

- Cryogenic (detectors) Dark Matter Search (for WIMPs)
- Detectors shielded in low-background environment (total trigger rate ~0.5 Hz)
- Excellent rejection of events from nearby cosmic muons or from α , β , γ radiation (13 potential WIMPs among 6.5x10⁶ events for 96 live-day exposure in Ge)
- Expect neutron background (from distant cosmic muons), estimated by rate of multiple-scatters and rate of events in Silicon
- DAMA has larger background and larger expected rate, similar expected sensitivity (cf. LSND & KARMEN)

Dependence of Spectrum on (M,σ)

- •Expected event rate scales with WIMP-nucleon cross-section σ
- •Larger WIMP
 mass M yields
 harder energy
 spectrum (but not
 a huge effect for
 large masses)

Calculation of Allowed Region

 Follow 'Unified Approach' of Feldman and Cousins: ordering by likelihood ratios with parameters constrained to lie inside the physical region:

Most likely value of neutron

eysical region:

$$R = \frac{L(E_i, N_m, N_{si} \mid M, \sigma, n)}{\widehat{L}(E_i, N_m, N_{si} \mid \widehat{M}, \widehat{\sigma}, \widehat{n})}$$
Most likely value of neutron flux for this (M, \sigma) and data

$$R = \frac{L(E_i, N_m, N_{si} \mid M, \sigma, \widehat{n})}{\widehat{L}(E_i, N_m, N_{si} \mid \widehat{M}, \widehat{\sigma}, \widehat{n})}$$
Most likely values of ...
Neutron flux
Number of Ge multiples
Number of Si singles

WIMP-nucleon cross-section
Number of Si singles

- Results are weakly dependent on n. To be conservative, project out n: A given point (M,σ) is excluded if $R(M,\sigma) < R_{90\%}$ (M,σ,n) for all n $(R_{90\%}$ determined by Monte Carlo).
- Results would be overly conservative if we used

$$R = \frac{L(E_{i}, N_{m}, N_{si} \mid M, \sigma, n)}{\widehat{L}(E_{i}, N_{m}, N_{si} \mid \widehat{M}, \widehat{\sigma}, \widehat{n})}$$

The Nuisance Parameter *n*

Slices of parameter space showing CL contours for M = 50 GeV

•Using most likely value of *n* in numerator of likelihood ratio *R* minimizes dependence of *R* on *n* -- makes projection to 2 dimensions less conservative

CDMS Likelihood Function

Numbers of events

Poisson probabilities given expected values

expected singles fraction β = 0.91 expected ratio n's in Si to Ge γ = 0.21 expected ratio w's in Si to Ge α < 0.02

$$\langle N_{\rm s} \rangle = n\beta + w,$$

 $\langle N_{\rm m} \rangle = n(1 - \beta),$
 $\langle N_{\rm Si} \rangle = n\gamma + w\alpha + b_{\rm Si},$
0.76 (conservative)

$$f_{\mathrm{s},i} = \eta \eta_{\mathrm{s},i} \epsilon(E_i) + (1-\eta) w_{\mathrm{s},i} \epsilon(E_i),$$
neutron WIMP spectrum spectrum, ~exponential, f(M) sum of 2 exponentials

Energies of events

CDMS Limits

- •Because we see more multiple-scatter events than expected, limits are 50% better than expected sensitivity
- •So far Bayesian method done only without energy info; results are similar to F-C.
- •See http://dmtools.berkeley.edu/ limitplots/ for interactive dark matter limit plotting

Compatibility with DAMA Regions

- •Bottom of DAMA Nal/1-2 2♂ (~87%) region excluded at 86.6% CL
- •Bottom of DAMA Nal/1-4 3♂ (~99%) region excluded at 71% CL
- It does not make sense to compare to DAMA Nal/0-4 region

Likelihood Ratio Test to Determine Compatibility

Assume compatibility for single (M,σ)

Likelihood ratio test

Allow separate
$$(M_c, \sigma_c, M_d, \sigma_d)$$
 = $\frac{L(X_c \mid \hat{M}, \hat{\sigma})L(X_d \mid \hat{M}, \hat{\sigma})}{L(X_c \mid \hat{M}_c \hat{\sigma}_c \hat{M}_d \hat{\sigma}_d)}$ = $\frac{L(X_c \mid \hat{M}_c \hat{\sigma}_c)L(X_d \mid \hat{M}_d \hat{\sigma}_d)}{L(X_c \mid \hat{M}_c \hat{\sigma}_c)L(X_d \mid \hat{M}_d \hat{\sigma}_d)}$

- where X are the observations of both experiments, $(\mathring{M}, \mathring{\Delta})$ are the values of WIMP mass and cross-section that maximize the likelihood of the two experiments together, and $(M_c, \mathring{\Delta}_c)$ and $(M_d, \mathring{\Delta}_d)$ are the values that maximize the likelihoods for CDMS and DAMA separately.
- Ideally, would like to determine significance of test from Monte Carlo
- Asymptotically (and far from the physical boundaries), -2log R behaves as a χ^2 with 2 degrees of freedom(due to 2 constraints in null hypothesis that $M_c = M_d$ and $\sigma_c = \sigma_d$).
- Requires correct likelihood contours for DAMA.
- Accuracy depends on how close we are to the asymptotic limit.
- Results otherwise easy to interpret; no dependence on true values (M,σ)

Estimating DAMA's Likelihood Function

- Need unpublished data for accurate estimate
 - Contours based on their Fig 2 are too high in cross sections
- •Fake it with published uncertainties, rate/2
 - → 3σ contour (maroon dash)
 matches published (black) ok

Results of Likelihood Ratio Test

Combining Significance of Both Experiments

•Given significance $\alpha = 1 - CL$ (at a point in parameter space), $\alpha_{BOTH} = \alpha_{CDMS} \alpha_{DAMA}$ (1 - $\log \alpha_{CDMS} \alpha_{DAMA}$)

- Estimate DAMA CL from likelihood estimate, assuming asymptotic approximation is ok
- Calculate CDMS CL using Feldman-Cousins Unified Approach (PRELIMINARY; Monte Carlo simulation in progress)
- Two experiments are incompatible at ~91% CL for most likely joint parameters (other parameters even less likely to give results of both experiments)

Conclusions

- Interesting new test case for different methods for calculating limits (and compatibility of experiments)
 - Background neutron rate n is nuisance parameter
 - Substituting most likely value of n into likelihood ratio works well
 - Neutron rate estimated by multiples & Silicon data is larger than total rate observed (limit beats expected sensitivity)
 - Statistical uncertainty on rate estimated by multiples and Silicon data is large
- Estimated compatibility with incomplete information
 - ▶ Bottom of DAMA 3_☉ region excluded at 71% CL
 - Estimated DAMA likelihood function, confidence contours
 - ◆ Two experiments incompatible at >~91% CL (PRELIMINARY)

CDMS Likelihood Contours

•Contours of $\triangle \log L =$

-1,-2, ...,-10,-20,...,-100

•Equal to χ^2 =2,4,...,20,

•Plot DAMA Nal/1-2 2σ

region (yellow), DAMA

Nal/1-4 (black) and

Nal/0-4 (pink) 3σ

regions

• $\triangle \log R = -2.3 \ (\chi^2 = 4.6)$ curve well below Feldman-Cousins MC 90% CL (so we are far from asymptotic limit)

Test of Compatibility with DAMA

- Compare to region allowed by DAMA signal without including constraint from DAMA's 1996 upper limit
 - Region including this constraint is made under assumption that DAMA's signal and upper limit are both correct -- but this may not be the case. If CDMS is incompatible with DAMA's signal, either DAMA's signal is wrong or CDMS's limit is wrong.
 - The fact that DAMA has data producing an upper limit should not make their signal appear to be more compatible with other upper limits.
 - The large difference between DAMA's two regions is due to fact that their upper limit is already somewhat incompatible with their signal (although not too significantly); the most likely (M,σ) point for their signal is ruled out by their 90% CL upper limit.