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P(contents|I, finish)
prior probability or likelihood?

• Coverage of Cousins + Highand Limits
– mixed Frequentist + Bayesian

• Dependence of Bayesian UL on
– Signal “noninformative” priors
– Efficiency informative priors

• and comparison with C+H limits

– background informative priors
• Summary and Op/Ed Pages



The Problem
• Observation:   see   k events 
• Poisson variable:

– expected mean is   s+b (signal + background) 
– s = εLσ

• efficiency × Luminosity × cross section
– “cross section ” σ really cross section × branching ratio

• Calculate U, 95% upper limit on σ

– function of k, b, and uncertainties δb, δε, δL
– focus on upper limits: searches



Some typical cases for
Calculation of 95% Upper Limits

k=0, b=3 The Karmen Problem

k=3, b=3 Standard Model Rules Again

k=10, b=3 The Levitation of Gordy Kane?
“seeing no excess, we proceed to 

set an upper limit…”



The 95% Solution:
Reverend Bayes to the Rescue

• Why?  He appeals to our theoretical side
from statistics, we want “the answer”; as close as it gets?

• Why?  to handle nuisance parameters
Name your poison

• Tincture of Bayes
Cousins and Highland treatment:

• Frequentist signals +  Bayesian nuisance

• Bayes Full Strength
The DØ nostrum:

Both signal and nuisance parameters Bayesian



Cousins & Highland
Trying to make everyone happy makes no one happy.

Not even Bob.

Treat signal in Frequentist fashion  (counts)

Bayesian treatment of nuisance parameters
modifies probabilities entering signal distribution 

“weighted average” over degree of belief in unknown parameters

Nota Bene
This is how every physicist I know instinctively
approaches this problem.  It’s the “natural” way,
particularly when writing a Monte Carlo



C+H Coverage Monte Carlo:
b=0; sensitivity uncertainty

• Fix true sensitivity, σ in outer loop
sweep through parameter space

find % of experiments with limits including σ at each point

• do MC experiments at each value
pick observed value for sensitivity, k
calculate limit based on these

see if limit covers true value of σ





Results for C+H Coverage

• Fails to cover for large cross section and 
small efficiency.

Not too surprising
• a count limit sU could be due to any value of 

σ since sU = εLσ
• if sensitivity small, would need a huge σU

• Remember, limit on σ must be valid for
any sensitivity--no matter how improbable

coverage handles statistical fluctuations only



Results for CH Coverage
Note added Jan 2003

• I no longer believe the results I presented on CH  
Coverage. 

• I hadn’t understood the plot I chose to show (I mis-
interpreted the meaning of the resolution parameter). 
This particular graph was work of colleagues, though 
the rest of the results in the talk were mine. 

• After discussions with Bob Cousins and Harrison 
Prosper, we further concluded that the coverage 
calculation in our colleagues’ internal 
collaboration note did not implement the CH 
prescription accurately.

• It is my present opinion that the coverage of 
the CH prescription remains an open question.



U = Bayes 95% Upper Limits
Credible Interval

• k =  number of events observed
• b = expected background
• Defined by integral on posterior probability
• Depends on prior probability for signal

how to express that we don’t know if it exists, 
but would be willing to believe it does?

This is the Faustian part of the bargain!
Posterior: compromise likelihood with prior



Expected coverage of Bayesian intervals

• Theorem:<coverage> = 95% for Bayes 95% interval
< > = average over (possible) true values weighted by prior

• Frequentist definition is minimum coverage for 
any value of parameter (especially the true one!)

not average coverage
• Classic tech support:  precise, plausible, misleading

if true for Poisson, why systematically under cover?
Because k small is infinitely small part of [0,∞]
but works beautifully for binomial (finite range)

• coverage varies with parameter but average is right on
– “obvious” if you do it with flat prior in parameter 



The sadness of Fred James:
JIM, HAVE YOU GONE ASTRAY?

• I am indeed seen to worship at           
Reverend Bayes’ establishment 

• I’m not a fully baptized member
– sorry Harrison, not that you haven’t tried!

• A skeptical inquirer...or a reluctant convert?
Attraction of treating systematics is great
Is accepting a Prior (he’s uninformative!) too high a price?

A solution for the tepid?
Can we substitute convention for conviction?

Either one should be examined for its consequences!



Candidate Signal Priors
• Flat up to maximum M  (e.g. σTOT)

– (our recommendation--but not invariant!)
– a convention for BR × cross section 

• 1/√s (Jeffreys: reparameterization invariant)
relatively popular “default” prior

• 1/s (one of Jeffreys’ recommendations)
get expected posterior mean
limit invariant under power transformation

• e-as not singular at s=0
Bayes for combining with k=0 prev expt, 

a = relative sensitivity to this experiment  
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Power Family sp Results (δb=0)
• The flat prior is not “special” (stationary)

But if b=0, Bayes UL =  Frequentist UL → coverage
but lower limit would differ

• 1/√s gives smaller limit (more weight to s=0)
– less coverage than flat (though converges for k→∞)

• 1/s gives you 0 upper limit if b > 0
too prejudiced towards 0 signal!

• More p dependence for k=0 than k=3 or k=10  
flat (p=0) to 1/√s gives 36%, 26% , 6%
data able to overwhelm prior (b=3)
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Exponential Family Results 
(δb=0)

• Peak at s=0 pulls limit lower than flat prior
• effects larger than 1/√s vs. flat: equivalent to data
• e-s gives you 1/2 the limit of flat (a=0) for k=0: 

combined 2 equal experiments
• biggest fractional effects on k=10   (=1/2.5)

because disagrees with previous k=0 measurement
opposite tendency of power family 

k=10 least dependent on power



Dependence on Efficiency Informative Prior
(representation of systematics)

• Input: estimated efficiency and uncertainty
η≡ uncertainty/estimate
“efficiency” is really εL (a nuisance parameter)

• Consider forms for efficiency prior
Expect: less fractional dependence on form of prior

• than on signal prior form
• because of the constraint of the input: informative

• study using flat prior for cross section,  δb=0
• Warning:    s = εL × σ (multiplicative form) 

limit in s could mean low efficiency or high σ



Expressing   ±δε
η ≡ δε/

ε̂
ε̂

• “obvious” Truncated Gaussian (Normal)
model for additive errors
we recommend(ed)
truncate so efficiency ≥ 0

• Lognormal (Gaussian in Ln ε )
model for multiplicative errors

• Gamma (Bayes conjugate prior)
flat prior + estimate of Poisson variable

• Beta (Bayes Conjugate prior)
flat prior + estimate of Binomial variable
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Results for Truncated Gaussian
• A bad choice, especially if η > .2 or so
• cutoff-dependent (MC: 4 sigma; calc .1<ε>)

Otherwise depends on M, range of prior for σ
• MC of course cranks out some answer

– dependent on luck, and cutoffs of generators
• WHY!? (same problem as with Coverage) 

– Can’t set limit if possibility of no sensitivity
Probability of  ε=0 always finite for a truncated Gaussian
with flat prior in σ, gives long tail in σ posterior
Bayes takes this literally: 

U reflects heavy weighting of large cross section!
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Results for alternatives 
ALL have P(ε=0) = 0 naturally

• Lognormal, beta, and gamma 
not very different (as expected--informative)
opinion: comparable to “choice of ensemble”

• Not a Huge effect:
U(η)/U(0) < 1+η up to η ∼ 1/3

. . .

• Lognormal, Gamma can be expressed as 
efficiency scaled to 1.0     (so can Gaussian)

• beta requires absolute scale (1-ε)j
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Results, compared with 
C+H (mixed Frequentist-Bayes)

• Truncated Gaussian well-behaved for C+H
no flat prior to compound with P(ε=0) > 0 ?
Fairly close to Bayes Lognormal

• C+H Limits depend on form of informative prior 
MORE than Bayes

Lognormal, gamma C+H lower than Bayes!
• C+H limits lower than Bayes limits

Which is “better”? coverage study? 
C+H Gaussian undercovers for small ε (→large σ)

But: I now (Jan ’03) believe this remains an open 
question



Dependence on 
Background Uncertainty

• Use flat prior, no efficiency uncertainty
• Use truncated Gaussian to represent <b>±δb

But isn’t that a disaster?  No--
additive is very different from multiplicative

εLσ + b
behavior at b=0 not special
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Background Prior Results

• Result: very mild dependence on ±δb/b
< 10% change up to δb/b = .66
most sensitive for k=3, b=3; k=1, b=3

absolute maximum: set b=0 20-40% typically
set b=0:  force Frequentist coverage?

• No need to consider more complex models



Paper in preparation

• With Harrison Prosper and Marc Paterno
coverage calculation: more DØ help

• Thanks to Louis Lyons for the prod to finish
– and a 2nd chance at understanding all this

• only 1 hour jet lag, maybe I’ll be awake

• Poisson, Fisher….



Summary 
(out of things to say)

Cases studied:  b=3, k=0,3,10 mostly
studies changed one thing at a time
• All Bayes upper limits seen to

monotonically increase with uncertainties 
(couldn’t quite  prove:

Goedel’s Theorem for Dummies)
Hello PDG/RPP

nuisance effects 15% or so--please advise us
ignoring them gives too-optimistic limits



Signal Prior Summary
Flat signal prior a convention

b=0, η=0 matches Frequentist upper limit 
we still recommend it 

careful it’s not normalized
flat vs 1/√s matters at 30% level when setting limits

So publish what you did!  
Enough info to deduce NU= σU/<εL> at one point

can see if method or results differ 
how about posting limits programs on web?

exponential family actually is a strong opinion (=data)



Informative Prior Summary 
Can’t set limit if possibility of no sensitivity
• C+H mixed prescription doesn’t cover

• Note added Jan 2003: I now believe this remains 
an open question!

– how well does Bayes do?  (“better”?)
• Efficiency informative prior matters in Bayesian 

at a level of 10% differences if you avoid Gaussian
Prefer Lognormal over Truncated Gaussian 
Keep uncertainty under 30% (large, ill-defined!)

• limit grows 20-30% for 30% fractional error in efficiency
• growth worse than quadratic 

Bayesian upper limits larger than C+H; more similar
Publish what you did 

• Background uncertainty weaker effect than efficiency
– typically < 15% even at δb/b=1



Is 20% difference in limits 
worth a religious war ...?

(less of a problem if we actually find something!)

• Flat σ Prior broadly useful in counting expts?
• Set limits on visible cross section σU(θ)

signal MC for ε (θ)
stays as close as we can get to raw counts
here is where scheme-dependence hits; it’s not too bad…

resolution corrections, prior dependence ~ 20-30% or less

• Interpret exclusion limits for θ:
compare σU to σ(θ)

IF steep parameter dependence: less scheme-dependence 
in limits for θ than σU(θ)...
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