

Tevatron Ionization Profile Monitors

Andreas Jansson K.Bowie, T.Fitzpatrick, R.Kwarciany, C.Lundberg, D.Slimmer, L.Valerio, J.Zagel

Also thanks to:

M.Bowden, A.Bross, A. Chen, R.Dysert, S.McCormick, H.Nguyen, C.Rivetta, T.Anderson, H.Glass, D.Harding, B.Hively, V. Kashikin, D.Miller, Z.Tang, J.Volk, T.Zimmermann, ...

Challenges in the Tevatron

BIWO6 Branne Broger Bro

- Two small beams separated by helix.
- Separate protons from pbars, injected from circulating beam
- Beam induced parasitic signals.
- Low vacuum pressure

Solutions:

- Fine pitch and many channels
- Single bunch resolution and gating
- Improved shielding and matched cables
- Local pressure bump with controlled leak

Tunnel installation

Magnets, stands, vacuum chambers, pumps, cables, plumbing put in place during shutdown autumn 2004

Tevatron Ionization Profile Monitor

IPM detector

All signal cables are enclosed in a Faraday cage!

Tevatron Ionization Profile Monitor

A. Jansson 4

BIW

Anode board

- $\frac{1}{4}$ mm strip pitch
- 200 channels (128 instrumented)
- On-board LP filter/ back-termination (series resistor)
- In-vacuum signal using cabling UHV-compatible flex-circuits
- High resolution area can be moved by swapping connectors

Microchannel plate

- With 36 proton bunches, useful gain is limited by saturation to ~1e4, which can be achieved with single plate
- With dual plates, each plate would run at a very low gain (and low bias/recharge current).
- Use single, extra-high bias current MCP.

Detector installation

Mounted on vacuum flange for easy installation.

Tevatron Ionization Profile Monitor

A. Jansson 7

DAQ system

- CMS-QIE front-end in tunnel.
- Serial data uplink on optical fiber
- Receiver and data buffer in upstairs PC
- Timing + clock + QIE settings supplied from PC thru cat-5E cable

Timing card

BIWO6 BIWO6 HAVI- AM. 2000

- Produces the 15MHz (2/7 RF) FE clock
- Decodes and transmits beamsync (p & pbar) injection events
- Transmits QIE settings
- Separate version of card decode TCLK/MDAT

RF

2/7

Front end card

- 8 channels (CMS QIE) per board.
- Noise ~1.8fC w 4' cable.
- Data is combined with timing information, serialized by CERN GOL ASIC (rad hard) and sent thru optical fiber at 1.1Gbps data rate
- Timing fanout board cleans up and distributes clock and timing signals

Data buffer card

- Handles 8 incoming optical links (64 channels, 1.1 GB/s of data)
- Data can be sparsified on-thefly based on timing masks
- 512MB RAM allows for
 - 20.000 turns of continuous data
 - 90.000 turns for 72 bunches
 - <u>6 million turns</u> for a single bunch
- Read out thru 64 bit PCI bus
- Two boards are used in a master-slave configuration, synchronized via a jumper cable

• IPM buffer board doubled as prototype for BTeV L1 data buffer.

Setup for initial tests

- 2005 shutdown moved to 2006
- Took advantage of magnet failure to install the vertical detector.
- Test DAQ system with 40 channels, 1cm active width, single buffer board

Tevatron Ionization Profile Monitor

E0 straight section

A. Jansson 12

Very first beam results

- Once the beam was located, signals appeared...
- Data taken at 980GeV during store 4634 without magnetic field.

Protons during store

consistent with flying wires taking into account the lower B-field

Tevatron Ionization Profile Monitor

5/1/2006

A. Jansson 14

ISTRUMENT

BIWO

Avr-

Protons at injection

Bunch 36 turn-by-turn

RMS profile width

27.5 #

30

32.5

35

25

0.4

frequency

turn

20

0.2

22.5

Tevatron Ionization Profile Monitor

0.8

0.6

BIW

Summary and conclusions

- The Tevatron IPMs can measure single bunches turn-by-turn both at injection and top energy.
- Electronics is largely borrowed or adapted from Particle Physics experiments
- Both systems will be (re)installed during the 2006 shutdown, with full readout electronics. More detailed studies to follow
- Some remaining parasitic signals to eliminate.
- Still need to try to measure pbars

