ν_e Oscillation Analysis
Progress at MiniBooNE

1. Motivation and Overview
2. Components of the Oscillation Analysis
3. Incorporating Constraints from ν_μ Data

Jocelyn Monroe, MIT
Aspen Winter Conference
January 11, 2007
MiniBooNE Motivation: LSND Result

Signals:
- **Solar:** $\Delta m^2 \sim 10^{-5} \text{ eV}^2$ (SNO, KamLAND, ...)
- **Atmospheric:** $\Delta m^2 \sim 10^{-3} \text{ eV}^2$ (Super-K, K, ...)
- **Accelerator:** $\Delta m^2 \sim 10^0 \text{ eV}^2$ (LSND)

Explanation for Δm^2 problem?
1. LSND interpretation may be wrong - confirm or refute with MiniBooNE
2. Add sterile neutrinos: 1, 2, 3 ...
3. (More) exotic possibilities

ν Oscillations

Weak eigenstates ($ν_e$, $ν_μ$, $ν_τ$) ≠ mass eigenstates ($ν_1$, $ν_2$, $ν_3$)

Parameters $Δm_{i,j}^2 = |m_i^2 - m_j^2|$, $\sin^2 θ_{i,j}$, $i,j=1,3$

2-ν oscillation probability:

$$P(ν_α \rightarrow ν_β) = \sin^2 2θ \sin^2 \left(\frac{1.27Δm^2 L}{E_ν} \right)$$

3 vs allow only 2 independent values of $Δm^2$
MiniBooNE Overview: Beam and Detector

MiniBooNE is searching for an excess of ν_e in a ν_μ beam

Protons: 4E12 protons per 1.6 μs pulse, at a rate of 3 - 4 Hz from Fermilab Booster accelerator, with $E=8.9$ GeV

Mesons: mostly π^+, produced in p-Be collisions, + signs focused in horn. 50m decay region.

Neutrinos: 450 m soil berm before the detector hall. Intrinsic ν_e flux $\sim 0.4\%$ x ν_μ flux.

Detector: 1280 PMTs, 250,000 gallons of mineral oil, Cherenkov and scintillation light. 240 PMTs in optically isolated veto region.

Beam ν_μ s from:

- $\pi^+ \rightarrow \mu^+ \nu_\mu$ (99.99%)
- $K^+ \rightarrow \mu^+ \nu_\mu$ (63%)

Beam ν_e s from:

- $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ (99.99%)
- $K^+ \rightarrow \pi^0 e^+ \nu_e$ (5%)
- $K^0_L \rightarrow \pi^\pm e^\pm \nu_e$ (39%)
MiniBooNE Beam: Pion Production

$\pi^+ \text{ prediction}$ comes from a fit to π^+ production data from E910, HARP experiments ($p_p = 6\text{-}12 \text{ GeV/c}$)

Fit uses Sanford-Wang parameterization of inclusive meson production in p-Be collisions.

HARP π^+ data at 8.9 GeV/c beam momentum shown (right) with prediction and error, data has excellent phase space coverage for MiniBooNE (below).

π^- similarly parameterized, but comprise negligible contribution to neutrino flux.
MiniBooNE Beam: **Kaon Production**

K\(^+\) *prediction* comes from a fit to *K*\(^+\) production data from past experiments \((= 10\text{--}24 \text{ GeV/c})\)

Fit uses a parameterization based on Feynman scaling (developed by MiniBooNE)

K*\(^+\) data from past experiments, scaled to 8.9 GeV/c beam momentum, shown with prediction and error (right), data has reasonable phase space coverage for MiniBooNE (below)

**K*\(^0\) similarly parameterized, but comprise much smaller background than K*\(^+\)
MiniBooNE Detector: Neutrino Cross Sections

![Graph of neutrino cross sections](image)

- **CC / NC quasi-elastic scattering (QE)**
 - 42% / 16%
- **CC / NC resonance production (1π)**
 - 25% / 7%
- **multi-π /DIS production**
 - ~13%

Cross Section Predictions from NUANCE Monte Carlo event generator:

A variety of theoretical models for exclusive processes, joined smoothly to reproduce the total CC cross section data, with model parameters tuned on free-nucleon data.

Use CCQE events for oscillation analysis signal channel:

\[
E_{\nu}^{QE} = \frac{1}{2} \frac{2M_p E_\mu - m_{\mu}^2}{M_p - E_\mu + \sqrt{(E_\mu^2 - m_{\mu}^2) \cos \theta_\mu}}
\]

Jocelyn Monroe, MIT

Aspen, page 6
MiniBooNE Detector: Reconstruction and Particle ID

Reconstruction:
PMTs collect γs, record t and q, fit time and angular distributions to find tracks

Final State Particle Identification:
muons have sharp rings due to Cherenkov emission, long tracks
electrons have fuzzy rings, from multiple scattering, and short tracks
neutral pions decay to 2 γs, which convert and produce two fuzzy rings,
\textit{easily mis-identified as electrons if one ring gets lost!}
MiniBooNE Detector: **NuMI “Calibration Beam”**

We need to verify our PID with ν_e in the signal energy range, but we are doing a blind analysis.

Solution: use someone else’s beam!

Sitting off axis, we see a beam which is enhanced in ν_e and is in a useful energy range.
Oscillation Search: Signal Event Selection #1

Method #1: to find ν_e CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant or cut on $e-\mu$ and $e-\pi$ likelihood variables to eliminate mis-IDs

placement of cut determined by requiring 99.9% rejection of ν_μ CC, 99% rejection of π^0, ~50% ν_e CC efficiency

“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam, which is out of time, off-axis, enhanced in ν_e, and spans the relevant energy range
Method #2: to find ν_e CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant or cut on $e^{-}\mu$ and $e^{-}\pi$ likelihood variables to eliminate mis-IDs

placement of cuts determined by requiring 99.9% rejection of ν_μ CC, 99% rejection of π^0, ~50% ν_e CC efficiency

“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam, which is out of time, off-axis, enhanced in ν_e, and spans the relevant energy range
Oscillation Search: Signal Extraction

Raster scan in \((\Delta m^2, \sin^2 2\theta)\), calculate

\[
\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) \mathcal{M}^{-1}_{ij} (m_j - t_j)
\]

what we predict for the existing data set (5.3E20 protons on target)...

Example oscillation signal
- \(\Delta m^2 = 1 \text{ eV}^2\)
- \(\sin^2 2\theta = 0.004\)

Fit for excess as a function of reconstructed \(\nu_e\) energy
Oscillation Search: Signal Extraction

Raster scan in \((\Delta m^2, \sin^2 2\theta)\), calculate

$$\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) M_{ij}^{-1} (m_j - t_j)$$

what we predict for the existing data set (5.3E20 protons on target)...

\(\nu_e\) from \(K^+\) and \(K^0\)

Use High energy \(\nu_e\) and \(\nu_\mu\) for normalization

Use fit to kaon production data for shape
Raster scan in $\left(\Delta m^2, \sin^2 2\theta\right)$, calculate

$$\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) M_{ij}^{-1} (m_j - t_j)$$

what we predict for the existing data set (5.3E20 protons on target)...
Oscillation Search: Signal Extraction

Raster scan in $(\Delta m^2, \sin^2 2\theta)$, calculate

$$\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) M_{ij}^{-1} (m_j - t_j)$$

what we predict for the existing data set (5.3E20 protons on target)...

MisID ν_μ

$\sim 83\% \pi^0$
- Only $\sim 1\%$ of all π^0s are misIDed
- Determined by clean π^0 measurement

$\sim 7\% \Delta \gamma$ decay
- Use clean π^0 measurement to estimate Δ production

$\sim 10\%$ other
- Use ν_μ CCQE rate to normalize and MC for shape
Oscillation Search: Signal Extraction

Raster scan in \((\Delta m^2, \sin^2\theta)\), calculate

\[
\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) M_{ij}^{-1} (m_j - t_j)
\]

what we see for the existing data set (5.3E20 protons on target)...

High energy \(\nu_e\) data

(remainder normalized)

Events below \(~1.5\) GeV still “in the box”

we are doing a “closed box” analysis in order to obtain the most convincing result!

- isolate data with the signature for \(\nu_\mu \rightarrow \nu_e\)
- use the rest (99%) to calibrate and constrain
Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
 - neutrino cross section nuclear model parameters
 - π^0 rate constraint

2. constraining systematic errors with neutrino data
 - combined oscillation fit to high-statistics ν_μ data set and ν_e oscillation data set
 - example: ν_e from μ decay background

"I think you should be more explicit here in step two."
Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale
- energy extrapolation
- PMT response
- optical model of light propagation in the detector
Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
 - neutrino cross section nuclear model parameters
 - π^0 rate constraint

2. constraining systematic errors with neutrino data
 - combined oscillation fit to high-statistics ν_μ data set and ν_e oscillation data set
 - example: ν_e from μ decay background

"I think you should be more explicit here in step two."
Incorporating ν_μ Data: ν_μ CCQE Event Selection

To find ν_μ CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. tag muons by requiring 2 sub-events in time, with distance between $< 1m$
3. employ Fisher discriminant to get rid of CC1π background
 - "single muon final state hypothesis" for inputs (proton ~invisible)
 result: 91% CCQE purity, ~100k events

PRELIMINARY unit-area normalization

- Data
 --- MC total
 ---- MC bgnd

Jocelyn Monroe, MIT
Incorporating ν_μ Data: CCQE Cross Section

The ν_μ CCQE data Q^2 distribution is fit to tune empirical parameters of the nuclear model (12C target) this results in good data-MC agreement for variables not used in tuning.

The tuned model is used for both ν_μ and ν_e CCQE, the only difference between these is lepton mass.
Incorporating ν_μ Data: π^0 Mis-ID Background

Clean π^0 events are used to tune the MC rate vs. π^0 momentum

This results in good data-MC agreement for variables not used in tuning

π^0 events can reconstruct outside of the invariant mass peak when:

1. asymmetric decays fake 1 ring
2. 1 of the 2 photons exits the detector
3. high momentum π^0 decays produce overlapping rings
Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
 - neutrino cross section nuclear model parameters
 - π^0 rate constraint

2. constraining systematic errors with neutrino data
 - combined oscillation fit to high-statistics ν_μ CCQE data set and ν_e oscillation data set
 - example: ν_e from μ decay background

"I think you should be more explicit here in step two."
Incorporating ν_μ Data: μ^+-Decay ν_e Background

ν_μ CCQE events can infer the π^+ spectrum, which constrains μ^+-decay ν_e & π^+-decay ν_μ flux predictions

how to implement μ^+-decay ν_e background constraint:

1. simulation based on external data predicts a central value and some range of possible $\nu_\mu(\pi)$ fluxes

2. make Data/MC ratio vs. $E_{\nu_{\text{QE}}}$ for the ν_μ CCQE data set,

3. reweight each possible MC flux by the ratio from (2) including the ν_μ, the parent π^+, the sister μ^+, and the niece ν_e

this works well because the ν_μ energy is highly correlated with the parent π^+ energy
Impact of reweighting the simulation using “fake data” (MC):

\begin{align*}
\nu_e (\mu^+) : &
\begin{cases}
\text{Before Cuts: } E_{\nu MC} \text{ (GeV)} \\
\text{Reweighted Before Cuts: } E_{\nu MC} \text{ (GeV)}
\end{cases}
\end{align*}

This reduction in the spread of possible fluxes translates directly into a reduction in the μ^+-decay ν_e background uncertainty.
Incorporating ν_μ Data: Combined Fit Example

Fit the E_ν^{QE} distributions of ν_e and ν_μ events for oscillations, together

Raster scan in Δm^2 and $\sin^2 2\theta_{\mu e}$ ($\sin^2 2\theta_{\mu e} = 0$), calculate χ^2 value over ν_e and ν_μ bins

$$\chi^2 = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_i - t_i) \ M_{ij}^{-1} (m_j - t_j)$$

For this example, systematic error matrix M_{ij} includes predicted π^+ flux uncertainties only, for ν_e and ν_μ bins

$$M_{ij} = \begin{pmatrix} \nu_\mu & \nu_\mu \nu_e \\ \nu_e \nu_\mu & \nu_e \end{pmatrix}$$

For this example, $m_i = "fake data" = MC with no oscillation signal

combined fit constrains uncertainties common to ν_e and ν_μ
Incorporating ν_μ Data: Combined Fit Example

Example fit result for π^+ flux errors

To calculate an oscillation sensitivity curve:

1. assume no signal in the data, therefore best-fit point is always at $\sin^2 2\theta_{\mu e} = 0$ for all Δm^2 values (such that $m_i \approx t_i$)

2. calculate χ^2 for all $(\Delta m^2, \sin^2 2\theta_{\mu e})$:

$$
\chi^2 = \sum_{i=1}^{N_{\text{bins}}} \sum_{j=1}^{N_{\text{bins}}} (m_i - t_i) M^{-1}_{ij} (m_j - t_j)
$$

3. find $\sin^2 2\theta_{\mu e}$ where $\Delta \chi^2 = \chi^2 - \chi^2_{\text{min}} = 1$ for each Δm^2, systematic errors come in via $\Delta \chi^2$

90, 99% confidence level allowed regions from LSND

these sensitivities are only examples to illustrate what the combined fit does
Incorporating ν_μ Data: Combined Fit Example

Example fit result for π^+ flux errors

90, 99% confidence level allowed regions from LSND

MiniBooNE 90% confidence level sensitivity limit with:

statistical errors only

these sensitivities are only examples to illustrate what the combined fit does
Incorporating ν_μ Data: Combined Fit Example

Example fit result for π^+ flux errors

90, 99% confidence level allowed regions from LSND

MiniBooNE 90% confidence level sensitivity limit with:

- statistical errors only
- π^+ flux errors from prediction, ν_e fit only

these sensitivities are only examples to illustrate what the combined fit does
Incorporating ν_μ Data: Combined Fit Example

Example fit result for π^+ flux errors

90, 99% confidence level allowed regions from LSND

MiniBooNE 90% confidence level sensitivity limit with:

- Statistical errors only
- π^+ flux errors from prediction, ν_e fit only
- π^+ flux errors from reweighted prediction, ν_e fit only

these sensitivities are only examples to illustrate what the combined fit does

Jocelyn Monroe, MIT
90, 99% confidence level allowed regions from LSND

Example fit result for π^+ flux errors

MiniBooNE 90% confidence level sensitivity limit with:

- statistical errors only
- π^+ flux errors from prediction, ν_e fit only
- π^+ flux errors from reweighted prediction, ν_e fit only
- π^+ flux errors from prediction, combined ν_e and ν_μ fit

these sensitivities are only examples to illustrate what the combined fit does

Jocelyn Monroe, MIT
Of course, there are many other sources of systematic error as well...

Summary of systematic error sources:

1. neutrino flux predictions
 - π^+, π^-, K^+, K^-, K^0, n, and p total and differential cross sections
 - secondary interactions
 - focusing horn current
 - target + horn system alignment

2. neutrino interaction cross section predictions
 - nuclear model
 - rates and kinematics for relevant exclusive processes
 - resonance width and branching fractions

3. detector modelling
 - optical model of light propagation in oil
 - PMT charge and time response
 - electronics response
 - neutrino interactions in dirt surrounding detector hall

MiniBooNE expected sensitivity covers LSND 90% C.L. allowed region at -3σ
Incorporating the ν_μ data set provides a valuable constraint for the ν_e appearance oscillation search.

- uncertainty on ν_e from μ decay is highly constrained
- combined fit naturally incorporates ν_μ data constraint for all sources of systematic error
- can constrain and cross-check \textit{all} of the ν_e and ν_μ backgrounds with in-situ data

MiniBooNE is close to the finish line, oscillation results soon!
Other Slides
MiniBooNE Overview: Optical Model Tuning

The optical model describes light propagation in the detector:

- Cherenkov and scintillation emission
- scattering, fluorescence, and extinction
- PMT detection efficiency

External measurements & laser calibration

First calibration with michels

Calibration of scintillation light with NC events

Final calibration with michels

Validation with cosmic muons, ν_μ events, and NuMI ν_e events

This is hard: need wavelength, angular, and time dependence + normalization for each process!
MiniBooNE Overview: Boosting

“A procedure that combines many weak classifiers to form a powerful committee”

A decision tree that is forced to try harder on mis-classified events

This tree is not unique!
A set of decision trees can be developed

Each data event is then sent through the full set of trees.
For each tree, the data event is assigned
+1 if it is identified as signal,
-1 if it is identified as background.

The total for all trees is then combined.
The resulting “score” for the event can be thought of as a probability that it is signal.