

MiniBooNE:

H. A. Tanaka Princeton University

Mixing in Leptons and Quarks

$$egin{aligned} |d_lpha
angle &=\sum_i V^*_{lpha i} |d_i
angle \ |
u_lpha
angle &=\sum_i U^*_{lpha i} |
u_i
angle \end{aligned}$$

Lepton Sector: Neutrino oscillations

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

Quark Sector:

Flavor-changing decays Mixing/oscillations CP violation

$$\begin{split} P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = & \delta_{\alpha\beta} \\ & -4\sum_{i>j} \Re(\mathbf{U}) \sin^2[1.27\Delta m_{ij}^2(L/E)] \quad \text{sum over mass} \\ & +2\sum_{i>j} \Im(\mathbf{U}) \sin[2.54\Delta m_{ij}^2(L/E)] \quad \text{eigenstates} \end{split}$$

Mixing in Leptons and Quarks

$$egin{aligned} |d_lpha
angle &=\sum_i V^*_{lpha i} |d_i
angle \ |
u_lpha
angle &=\sum_i U^*_{lpha i} |
u_i
angle \end{aligned}$$

Lepton Sector: Neutrino oscillations

 $P(\mathbf{v}_{lpha}
ightarrow \mathbf{v}_{eta}) = \delta_{lpha eta}$

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

ctor:
ationsNeutrino of type α, energy E
Traverses distance L
Interacts as neutrino of type β
Observe as: deficit of v_{α}
appearance of v_{β} $\delta_{\alpha\beta}$ appearance of v_{β} $-4\sum_{i>j}\Re(U)\sin^2[1.27\Delta m_{ij}^2(L/E)]$
 $+2\sum_{i>j}\Im(U)\sin[2.54\Delta m_{ij}^2(L/E)]$

Mixing in Leptons and Quarks

$$egin{aligned} |d_lpha
angle &=\sum_i V^*_{lpha i} |d_i
angle \ |
u_lpha
angle &=\sum_i U^*_{lpha i} |
u_i
angle \end{aligned}$$

- Mass eigenstates ≠
 Flavor eigenstates
- Allows flavor-changing interactions
- No theoretical guidance

Lepton Sector: Neutrino oscillations

 $\sin^2 2\theta_{12} \sin^2 [1.27 \Delta m_{12}^2 (L/E)]$ Two flavor oscillations

 $P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \delta_{\alpha\beta} -4\sum_{i>j} \Re(\mathbf{U}) \sin^{2}[1.27\Delta m_{ij}^{2}(L/E)] +2\sum_{i>j} \Im(\mathbf{U}) \sin[2.54\Delta m_{ij}^{2}(L/E)] - CP \text{ violation}$

Solar Neutrino Oscillations

$$\mathbf{v}_e \rightarrow \mathbf{v}_x$$

$\Delta m^2 \sim 8 \times 10^{-5} \, eV^2$, $\sin^2 2 \vartheta \sim 0.3$

Solar neutrinos, confirmed by reactor antineutrinos

Atmospheric Neutrino Oscillations

 $\mathbf{v}_e \rightarrow \mathbf{v}_{\chi} \qquad \mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\chi}$

 Δm²~8x10⁻⁵ eV², sin² 2θ~0.3
 Δm²~2.5x10⁻³ eV², sin² 2θ~1.0
 Atmospheric ν, confirmed by accelerator ν Aspen Conference on Particle Physics February 2005

LSND Oscillations:

 $v_e \rightarrow v_x$

 $\mathbf{v}_{\mu}
ightarrow \mathbf{v}_{\chi}$

 \mathcal{V}_{e}

 $\bar{\nu}_{\mu}$ $\Delta m^2 \sim 8 \times 10^{-5} \, eV^2$, $\sin^2 2 \vartheta \sim 0.3$ × $\Delta m^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2 \vartheta \sim 1.0$ $\Delta m^2 \sim 10^{-1} - 10^1 \text{ eV}^2$, $\sin^2 2\theta \sim 10^{-4} - 10^{-2}$ LSND Aspen Conference on Particle Physics February 2005

The LSND Result

Search for excess \bar{v}_e in \bar{v}_μ beam • Stopped pion beam produces pure \bar{v}_μ $\pi^+ \rightarrow \mu^+ v_\mu$ $\mu^+ \rightarrow e^+ v_e \bar{v}_\mu$ • Excess of 87.9 ±22.4 ±6.0 events • Oscillation probability: $(0.264\pm 0.067\pm 0.047)\%$

A challenge to the Standard Model:

Δm²~10⁻⁵, 10⁻³, 10⁻¹eV² cannot result from three neutrinos
 Cannot be explained by additional light active neutrinos
 Fundamentally new physics (additional particles, broken symmetries) needed to explain all three modes.

MiniBooNE

Confirm/refute LSND evidence for $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillations

LSND vs. MiniBooNE LSND MiniBooNE

Neutrino Energy	~40 MeV	~800 MeV
Baseline	30 meters	540 meters
Signal Process	inverse β decay	v _e CC quasi-elastic
Signal Identification	Double coincidence (e ⁺ , n capture)	Č ring, Sci. profile ν _e from μ/Κ NC π ⁰
Backgrounds	π⁻ wrong sign decay	
S/B Yield	~88/30	~300/800

• Sensitive to same parameters with different method Aspen Conference on Particle Physics February 2005

Overview of MiniBooNE

- Produce a pure beam of v_{μ}
 - proton interactions on Be produce π^+
 - $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ in decay region

- 8 GeV Protons delivered by FNAL Booster
- Look for v_e interactions in the detector

Focussing the Beam

- Electromagnetic focussing horn
 - 170 kA pulse New horn installed an
 - focuses positive secondaries

New horn installed and working well

- x5 enhancement in neutrino flux
 - Polarity can be reversed to focus negative secondaries

"Intrinsic" Background (II)

- Sources of v_e not due to neutrino oscillations
 - μ^+ produced from π^+ decay can also decay
 - Kaons are produced in p-Be interactions and decay via K_{e3}
- Source of irreducible v_e background

The Neutrino Beam

• Primary p-Be interaction:

- π^{\pm} from global fit to available data
- K⁺ from global fit
- K⁰ scaled according to GFLUKA
- Use existing data including E910
- High purity v_{μ} beam
 - ~0.5% v_e contamination from:
 - Kaons produced at target (K_{e3})
 - μ decays from pion decay
- 540 m baseline to detector

HARP (Hadron Production)

Dedicated Measurement:

- 8 GeV protons on Be
 - Replica targets
 0.1, 0.5 and 1 interaction length

• Tracking (TPC, Drift Chambers) Particle ID (TOF and Cherenkov)

Precision Pion and Kaon production measurement
 Spectrum and rate of incident neutrino flux
 Backgrounds from intrinsic v_e (Kaon decay)
 First measurements of pion production released
 Aspen Conference on Particle Physics February 2005

Little Muon Counter (LMC)

Decay Region Monitor:

- Wide angle (7°), high p (2 GeV/c) muons
- Kaon decays in the decay pipe.

Detector:

- Collimator to select angle range
- Fiber tracker/magnet
- Range stack

Detector installed: Analysis in progress

The MiniBooNE Detector

- 800 ton mineral oil target
- 610 cm radius
- Optical barrier at 575 cm
 - Inner "tank" volume
 1280 photomultipliers
 - Outer "veto" region
 240 photomultipliers

Detect neutrino interactions via Č and scintillation light

Particle Identification:

Cherenkov radiation:

- Charged particles with produce cone of radiation
- Minimum ionizing particles (muons) sharp-edged rings
- Electrons (photons) scatter, shower, convert, etc.
 →more diffuse rings
- Multiple particles: reconstruct by identifying rings

Reducible Backgrounds

• Signal Process: v_e CCQE

- $v_e + n \rightarrow p + e$
- proton typically under threshold
- single electron-like ring
- Backgrounds from high energy photons
 - NC π^0 production: $\nu + (n/p) \rightarrow \nu + \pi^0 + (n/p) = \pi^0 \rightarrow \gamma\gamma$
 - NC radiative Δ decays: $\mathbf{v} + (n/p) \rightarrow \mathbf{v} + \Delta$ $\Delta \rightarrow (n/p) + \gamma$
- Background rejection by topology of PMT hits

Highly sensitive to photon propagation in mineral oil

Primary light production

- Č light production
 - Occurs when $n\beta > 1$ (n~1.47)
 - Emitted in cone
 - $1/\lambda^2$ wavelength distribution
- Scintillation light
 - Emission from molecular excitations from ionization
 - Emits isotropically
 - Several lifetime, emission modes

• $\lambda = 270-340$ nm

Optical properties of light change dramatically over wavelength range Aspen Conference on Particle Physics February 2005

Absorption

Photon disappears: Thermally dissipated

Rayleigh/Raman Scattering

Rayleigh Scattering:

- Density pertubations
- Prompt, no λ shift
- Raman scattering
 - Excitation of vibrational states
 - Prompt with λ shift

Dominant process at λ >350 nm

Fluorescence

Excite molecular states

- Emission at different wavelength
- Decay lifetime
- Multiple components
 - Different lifetimes (0.35-33 ns)
 - Different emission (270-340 nm)
- Stokes Shift:
 - UV photons red-shifted to visual

Dominant process in UV region (<300 nm)

Summary of Processes

Measurements of

- Index of refraction
- Raman/Rayleigh
- Fluorescence
 - time-resolved
 - steady state
- Overall rate (extinction)
- Scintillation

Complement "test beam" measurements with *in-situ* calibrations Recent "push" propagating through analyses Aspen Conference on Particle Physics February 2005

Calibration Systems

Tracker/Cube System

- Scintillator hodoscope
- Seven scintillator cubes at various depths (15 cm-6 m)
 Muons with well-known pathlength

Laser Flask System: 397 and 438 nm pulsed lasers 4 Ludox flasks scatter light 1 bare fiber (collimated light)

Calibration Systems

Tracker/Cube reconstructed muons

- Energy estimate from pathlength and dE/dx
- Compare with reconstructed energy

Michel electrons:

Decay of stopped muons

Well-defined energy spectrum

Reconstructed energy compared with theory and resolution model

Space/Time Distributions

Laser data:

- Scattering/absorption from time profile Tracker/Cube Muons:
 - Scintillation/Fluorescence from time and angular distribution

Neutrino Interactions at O(1GeV)

v_u CCQE events

Selected based on: **Ring profile** Time profile of hits 80% purity Neutrino energy based on Energy, angle of muon Two body kinematics 28K events selected

NC π^0 Events:

• Two ring fit for each event

- Č/Sci light from each
- Direction
- Mean shower point

Kinematic reconstruction of $\pi^0 \rightarrow \gamma \gamma$ decay Aspen Conference on Particle Physics February 2005

NC π^0 Kinematic Distributions

π^0 misidentification driven by

- Collimation of photons, energy asymmetry of photons
- Momentum, CM decay axis

Expected Signal/Background

Process All Events After Selection

v_{μ} CC quasi-elastic	553,000	8
$\nu_{\mu} NC \pi^{0}$	110,000	290
Radiative Δ decay	1,080	80
Intrinsic v _e	2,500	350
Oscillation Signal	1,500	300

Signal/Background 300/780=0.38For 10^{21} protons-on-target NC π^0 is dominant reducible background Aspen Conference on Particle Physics February 2005

Expected Sensitivity

Energy distribution fit to extract signal, background yield

Looking ahead: FY 2006

- MiniBooNE approved for FY06 running
- FY06 running may be in antineutrino mode: Studies of O(1 GeV) \bar{v}_{μ} interactions
 - Challenge: wrong-sign (v_u) contamination (30%)
 - Angular distributions
 - Muon lifetime (μ^+ vs. μ^- with capture)
 - CC π^+ events (from v_{μ} events only)
- Prepare for $\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e}$ oscillation search

Summary and Outlook MiniBooNE: Confirm/refute LSND evidence for neutrino oscillations ! Confirmation has dramatic implications for neutrino physics Accumulated 4×10^{20} pot (400K neutrino interactions) Detector/reconstruction functioning well Beamline functioning well (>100 million horn pulses with 1st horn, new horn installed) **Current Activities** Systematic studies: Bring offline measurements and in-situ into agreement For both beam and detector

Accumulating data towards 10²¹ pot goal

Neutrinos in the Standard Model

- Lepton sector has
 - charged leptons
 - neutrinos
- Neutrinos identified by flavor

 v_l produces lepton *l* (e, μ, τ) in the weak charged current interaction Aspen Conference on Particle Physics February 2005

"Intrinsic" Background (I)

- μ^+ produced from π^+ decay can also decay
 - Produce v_e in detector not due to oscillations
 - Irreducible "intrinsic" v_e background
- μ⁺ intrinsic background ∝ decay region length

"MisID" Background

- Some v_u interactions produce high energy γ s
 - π^0 production
 - Radiative Delta decays $(\Delta \rightarrow N\gamma)$
- γ conversions produces e⁺e⁻ pairs
 - Reducible by analyzing topology of event

Cosmic Rays

Shallow overburden reduces rate to 10 kHz

- Use combination of active veto, beam timing
- e from stopped µ provide valuable calibration

Fluorescence

1 cm cell:

- Time-resolved (285, 300 nm excitation)
- Steady-state excitation/emission matrix

Cosmic Rays

Rate and angular distribution of Rayleigh scattering

v_{μ} CCQE Kinematics

