Kaluza-Klein Dark Matter: a review

Géraldine SERVANT Service de Physique Théorique-CEA/Saclay

```
Based on work with -Tim Tait: hep-ph/0206071 (NPB) hep-ph/0209262 (New J.Phys.)
```

-Bertone & Sigl: hep-ph/0211342 (PRD)

-Kaustubh Agashe: hep-ph/0403143 (PRL) hep-ph/0411254 (JCAP)

-Dan Hooper: to appear

only gravity in bulk

- radion dark matterm~meV; (fine-tuned)
- branon dark matter (fine-tuned)

radion dark matterm~meV; (fine-tuned)

- KK dark matter (WIMP!)

Warped geometries (Randall-Sundrum)

(AdS)

if GUT in bulk

- radion unstable

 $R \sim M_{Pl}^{-1}$

but

M~ TeV

- KK dark matter (WIMP!)

WIMP KK dark matter

So far, two working models:

✓ Universal Extra Dimensions (UED)

WIMP = Lightest KK particle (LKP) stability symmetry = KK parity

✓ Warped GUTs

WIMP = Lightest Z_3 charged particle (LZP) stability symmetry = Z_3 symmetry

+ a potential link between the LZP and baryogenesis...

Literature on KK dark matter: the complete list

Kolb & Slansky '84

Thought about it, but in 1984 R⁻¹~TeV was inconceivable...

Dienes, Dudas & Gherghetta '99 Mohapatra& Perez-Lorenzana '02

mentionned the idea in passing

Servant & Tait '02 Cheng, Feng & Matchev '02 Servant & Tait '02 Majumdar '02 Hooper & Kribs '02 Bertone, Servant & Sigl '02 Hooper & Kribs '04

Detailed relic density calculation
Direct and indirect detection
Direct detection
Direct detection
Prospects for neutrino telescopes
Indirect detection
Positron excess

Bergstrom, Bringmann, Eriksson & Gustafsson '04

Indirect detection

Baltz & Hooper '04

Bergstrom, Bringmann, Eriksson & Gustafsson II '04

Kakizaki, Matsumoto, Sato & Senami '05 A 2nd look at the relic density calculation

+ superWimp KK graviton papers

Agashe & Servant '04 Agashe & Servant II '04

Hooper & Servant, upcoming

Model building, relic density, direct detection, collider signatures ...

Indirect detection

KK dark matter in UED

Warped KK dark matter

LKP dark matter in Universal Extra Dimensions

UED: ALL SM particles propagate into flat dimensions Appelquist, Cheng & Dobrescu '01

Conservation of momentum along extra dimension translates in 4D into conservation of KK number

by the orbifold we impose to recover a chiral theory

Other consequence of KK parity:
Production of 1rst KK modes
only by pairs:

⇒Weak bound on 1/R

1-loop spectrum of 1rst KK modes

Cheng, Matchev & Schmaltz'02

assuming:1/R=500 GeV, $\Lambda R=20, m_h=120\,$ GeV and vanishing boundary terms at the cutoff Λ

 \rightarrow LKP: most likely a γ^1 (actually a β^1)

Another intriguing possibility: LKP=KK graviton (see S. Su's talk)

Relic density predictions

REMINDER:
$$\Omega k^2 \approx \frac{10^9}{m_N} \frac{\alpha_F}{\sqrt{g_*}} \frac{GeV^{-1}}{\sqrt{\sigma_{eff} v}}$$

$$\Omega k^2 \approx 0.11 \qquad (\sigma_{eff} - 1) pt \qquad (\alpha_F = 25-35)$$

Coannihilation effects

0.18 •••• 1 Flavor 0.163 Flavors 0.14 0.12 \Box h² 0.08 0.06 0.04 [] = .05 0.02 [] = .010.2 0.4 0.6 0.8 1.2

 $m_{KK} (TeV)$

✓ Possible effect of additional dimension

✓ Effect of 2nd KK modes

"natural KK resonance"
Kakizaki & al, hep-ph/0502059

Servant-Tait

$$\delta \equiv (m_{h^{(2)}} - 2m)/2m$$
$$\delta \sim 0.01$$

Direct detection

Experimental limits:

LKP signal:

Particle physics model building in warped space

2005 FAVOURITE SET-UP:

- ✓ hierarchy pb
- ✓ fermion masses
- ✓ High scale unification
- ✓ FRW cosmology

Now embed this into a GUT + solve proton stability

✓ Dark matter

In GUTs ⇒

where $M_{X,Y} \sim \text{few TeV}$ $\Rightarrow \text{very fast proton decay}$

Solution: Break GUT by boundary conditions which split

GUT multiplets

zero modes= SM fermions

Mass spectrum of KK fermions

Depends on:

- type of boundary conditions on TeV and Planck branes
- c-parameter (=5D bulk mass)(=localization of zero-mode wave function)

For certain type of boundary conditions on fermions, there can be a hierarchy between the mass of KK fermion and the mass of KK gauge bosons

⇒ Not a single KK scale

Mass spectrum of lightest KK fermion

M_{kk}value

and smallest c: c of the top quark

⇒ LZP belongs to the multiplet containing SM top quark

There exists a very light KK fermion as a consequence of the heaviness of the top guark

zero modes= SM fermions

Relic density predictions

Direct detection

Wimp-nucleon elastic scattering cross section (spin-independent)

CDMS limit (only applies for some range of wimp masses)

Collider Signatures: examples

$$\longrightarrow 6W + 4b + \not\not\in$$

Indirect detection in neutrino telescopes

Large elastic scattering cross section: large capture rate in the Sun Efficient production of neutrinos in annihilations

Cosmic positrons from LZP annihilations

Fit of the HEAT data from LZP annihilations

40 GeV LZP 50 GeV LZP

Hooper & Servant, in prep.

A natural framework to relate baryons and

Our dark matter candidate carries baryon number! (B=1/3)

$$B = 0 = B + (-B)$$

carried by
baryons

carried by
anti-LZP

Assume an asymmetry between t and \bar{t} is created via the out-of-equilibrium and CP-violating decay:

Baryon number conservation leads to:

$$3 (n_{\overline{LZP}} - n_{LZP}) = n_b - n_{\overline{b}}$$

Assuming efficient annihilation between LZP and \overline{LZP} , and b and \overline{b}

$$\rho_{DM} = m_{LZP} n_{LZP} \approx 6 \rho_b \longrightarrow m_{LZP} \approx 18 \text{ GeV}$$

	LKP	LZP	LSP
nature	gauge boson	Dirac fermion	Majorana fermion
symmetry	KK parity (-1)	$ \begin{array}{c} Z_3 \\ B - (n_c - \bar{n}_c) \\ 3 \end{array} $ related to proto	R-parity 3(B-L)+25 (-1) n stability
mass range	~600-1000 GeV	20 GeV-few TeV	~50 GeV-1 TeV
annihilatio	on S-wave	s-wave	nelicity suppressed (p-wave)
favourite detection	LHC Indirect detection	✓ Direct detection ✓ LHC! ✓ Indirect detection entire parameter space is testable	✓ LHC

To conclude

Abundance of experimental activity related to dark matter detection:

- Colliders
- Direct detection: CDMS, Edelweiss, Dama, Cresst, Zeplin, Xenon, Naiad ...
- Indirect detection:

Gamma-ray telescopes: Hess, Veritas, Glast, Magic

Neutrino telescopes: Amanda, IceCube, Antares

Cosmic positron experiments: HEAT, Pamela, AMS-2

⇒It is timely to study the distinctive signatures expected in different dark matter scenarios.

LKPs, LZPs: viable alternatives to LSPs