Particle Physics Opportunities

with the Next Generation
Ultra High Energy Neutrino Telescopes

David Saltzberg
University of California, Los Angeles
Aspen Winter Conference
“The Highest Energy Physics”
February 17, 2005

Particle Physics with a Tevatron

Teraton
Astrophysical Neutrino Sources
“Batting 1000”

ν weak eigenstates ≠ mass eigenstates
ν mass

dispersion → ν mass limits
constrains ν decay scenarios
Conclusion

- **Saltbed Sensor Array: Overview**
 - Instrument 1000-km3–sr neutrino aperture
 - Use radio emission from neutrino induced showers:
 - 10 times the attenuation length of water & ice

Halite (rock salt)
- $L_\alpha(<1\text{GHz}) > 500$ m w.e.
- Depth to >10 km
- Diameter: 3-8 km
- $V_{\text{eff}} \sim 100$-200 km3 w.e.
- No known background
- $>2\pi$ steradians possible
GUT scale particles

- **Exotic Physics**: UHECR would result from decays of super-heavy particles.
- **Example**: Grand Unified Supersymmetric Theories:

Is its lifetime comparable to age of universe or is it $\sim 10^{-40}$ sec?

Loophole—produce them continuously by “**topological defects**” remaining from Big Bang
Topological Defects

- Some specific models
 - Bhattacharjee, Hill, Schramm PRL 69, 567, (1992)
 - Protheroe & Stanev PRL 77, 3708 (1996)

- Basic ideas
 - Were attractive to circumvent GZK cutoff for UHE cosmic rays.
 - Topological defects could be monopoles, superconducting cosmic strings, domain walls
 - Generally these models produce hard neutrino spectrum: \(\sim E^{-(1-1.5)} \)
 - “bottom-up” scenarios are more steeply falling: \(E^{-2} \) to \(E^{-4} \)
 - not ruled out by lower energy telescopes
 - constrained by MeV—GeV isotropic photon fluxes
 - Neutrino flux vs. energy sensitive to source evolution vs. \(z \) of TD’s.
“Guaranteed” Neutrinos

Astrophysical processes are producing particles over at least 7 more orders of magnitude

Neutrinos would point back:

- Sources may produce neutrinos directly
- or indirectly ("GZK process")

\[p + \gamma_{2.7K} \rightarrow \Delta^* \rightarrow n + \pi^\pm \]

“guaranteed” neutrinos
Summary UHE ν Models

\[
\text{intensity (} I \text{)} = \frac{d^3N}{dA d\Omega dt}
\]

\[
\text{brightness (} I_E \text{)} = \frac{d^4N}{dA d\Omega dt dE}
\]

- Possible point of confusion:
 - Models give brightness
 - But, experiments measure intensity
Most commonly used:
B&B physics with ν cross section

- HERA tests proton structure to $x \sim 10^{-4}$ (only 10^{-2} at “high” Q^2)
- UHE ν probes proton structure to $x \sim 10^{-8}$
- Extreme regime: More likely to scatter off of bottom sea than up/down valence.
- observables?
- Check SM with NC/CC ratio at extremely high Q^2
UHE Neutrino Cross Section and low-scale Quantum Gravity

- Probing interactions at high CM
 - $E_{\text{cm}} = \sqrt{2m_p E_\nu^2} \Rightarrow 150 \text{ TeV for } E_\nu = 10^{19} \text{ eV}$
 - $\sigma_{\text{SM}}(\nu+N) \sim 10^{-7} \varepsilon \sigma_{\text{SM}}(p+N)$

- Large extra dimension models could enhance ν cross section
 - Gravity could become strong at $E_{\text{CM}}=M_D$
 - Non-perturbative effects could produce KK-exitations, string excitation, p-branes, micro-BH above E_{CM}

$$M_D = \left[\frac{M_{pl}^2}{8\pi r_C^n} \right]^{2/n} \text{ where } M_{pl} \equiv 10^{28} \text{ eV}$$

- Astrophysics and laboratory limits still allow
 - $n=4, M_D > 10$ TeV
 - $n \geq 5, M_D > 1$ TeV
Enhancement of UHE Neutrino Cross Section

Sample predictions for \(M_D \sim 1 \text{ TeV}, n \sim 6-7:\)

- Caveat: not all energy goes into BH or excitation, and need minimum energy for classical BH formation.
- UHE \(\nu \) cross sections could be up to \(\sim 100 \times \) Standard Model
 * would be invisible to UHECR interactions
Neutrino Telescopes for Direct Monopole Detection

Monopoles:
- Dirac: The presence of even one monopole explains electric charge quantization
- Masses typically of order GUT scale
- but in some models M_{mp} could even be as low as $\sim 10^{14}$ eV.
- E in extra-gal. magnetic fields $\sim 10^{24}$ eV

Parker bound (10^{-15} cm$^{-2}$ s$^{-1}$ sr$^{-1}$)
- c.f. UHECR$>10^{20}$ eV ($\sim 10^{-21}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$)
- other direct MP searches barely approach Parker bound
- Caveat: if monopoles catalyze proton decay then (lack of) neutron star heating provides extremely strong limit.
Neutrino Telescopes for Direct Monopole Detection

Wick, Kephart, Weiler, Biermann

- Relativistic monopoles mimic particle with large charge: at least $Z \sim 68$
 - produce EM showers along path by pair-production, photo-nuclear
 - continuously produces shower along its path \rightarrow unique signature
- WKW estimate $F < 10^{-18} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ for a km3 detector for 1 year.
 - SalSA could do \sim10-100 times better:
 - sensitive for M_{mp} up to 10^{23} eV, far beyond production at accelerators.
 - Flux limit better than typical searches
Anomalous Neutrino Decay

- Critical parameter for neutrino oscillations and decay is proper time, \(L/E \).
 - Solar neutrinos: \(150,000 \text{ km/}5\times10^6 \text{ eV} = 30 \text{ m/eV} \)
 - “SalSA” neutrinos from 4 Gpc/\(10^{17} \text{ eV} = 10^9 \text{ m/eV} \)
- No SM \(\nu \) decay from SM on these time scales
 - However, \(\nu \rightarrow \nu + J \) (J= Majoran)
 - Flavor ratios would be from lightest mass eigenstate

"Normal" hierarchy

\[
\Delta m_{23}^2 \quad \begin{cases} \mu \mu \tau \\
\text{(atm.)} \\
\Delta m_{12}^2 \quad \begin{cases} e\mu \tau \\
\text{(solar)}
\end{cases}
\end{cases}
\]

- Beacom, Bell, Hooper, Pakvasa, Weiler
 - \(\nu_e : \nu_\mu : \nu_\tau \)
 - \(\sim 1:1:1 \) ! 5:1:1
Beyond km3?
Two Good Ideas by Gurgen Askaryan (I)
(1962)

UHE event will induce an e/γ shower:

In electron-gamma shower in matter, there will be
\sim20% more electrons than positrons.

Compton scattering: $\gamma + e^-_{(at \ rest)} \rightarrow \gamma + e^-$
Positron annihilation: $e^+ + e^-_{(at \ rest)} \rightarrow \gamma + \gamma$
Two Good Ideas by Gurgen Askaryan (I)

Excess charge moving faster than \(c/n \) in matter emit **Cherenkov** Radiation

\[
\frac{dP_{CR}}{d\nu} \propto \nu d\nu
\]

Each charge emits field \(|E| \propto e^{ikr} \)

and Power \(\propto |E_{tot}|^2 \)

In dense material \(R_{\text{Moliere}} \sim 10\text{cm} \).

\(\lambda \ll R_{\text{Moliere}} \) (optical case), **random phases** \(\Rightarrow P \propto N \)

\(\lambda \gg R_{\text{Moliere}} \) (microwaves), **coherent** \(\Rightarrow P \propto N^2 \)

Confirmed with Modern simulations + Maxwell’s equations:

(Halzen, Zas, Stanev, Alvarez-Muniz, Seckel, Razzaque, Buniy, Ralston, McKay …)
Another Good Idea from Askaryan (II):
Acoustic Detection
(1957)

- Verified in beamtests at Brookhaven (J. Learned, L. Sulak…)

![Diagram of acoustic detection in ocean water with a hydrophone and pressure vs. time graph.](image)
The SLAC Salt and Sand boxes

- Amplitude expected
- 100% linearly polarized
- Cherenkov angle
RICE Experiment

- “Radio in Ice Experiment”
- Dipoles (100-1000 MHz) on AMANDA strings @ South Pole
- 200 x 200 x 200 meter array
- Uses long attenuation length (view to ~ 7km)
- \(E_\nu > 10^{17} \) eV
- \([V\Delta\Omega] \gg 10^{\text{km}^3\cdot\text{sr}}\)
- Status
 - published on 333 hour dataset
 - results from 3-year dataset
 - datataking ongoing
- Expected events in 5 years:
 - ~9 TD events
 - 2-7 GZK events
 - ~3 GRB/AGN events

Goldstone Lunar UHE Neutrino Search (GLUE)

P. Gorham et al., PRL 93, 041101 (2004)

Two antennas at JPL’s Goldstone, Calif. Tracking Station

- limits on \(>10^{20}\) eV \(\nu\)'s
- regolith attenu. len. \(\sim 20\) m
- \(\sim 123\) hours livetime
- \([V\Delta\Omega]_{eff} \sim 600\) km\(^3\)-sr
- datataking complete

Example Forte Event

$E_v^{\text{thresh}} \gg 10^{22}$ eV

$[V\Delta\Omega] \sim 100,000 \text{ km}^3 \text{ sr}$, but threshold extremely high.
ANITA

$E_\nu > 10^{17}$ eV

$[V\Delta \Omega] \sim 20,000 \text{ km}^3\text{-sr}$

First flight in 2006-07

Anita-LITE

- 18 day flight in 2003-04
- Antarctica proved very radio quiet
- Observed the Sun as calibration
- Ground pulses observed w/120 psec timing – gives $\delta \phi = 2^\pm$, $\delta \theta = 0.5^\pm$
Comparing using Models

<table>
<thead>
<tr>
<th>Telescope</th>
<th>Duration</th>
<th>N_{events}</th>
<th>Top. Def.</th>
<th>GZK</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anita</td>
<td>45 live days</td>
<td>43</td>
<td>(PS)</td>
<td>4.8</td>
<td>18</td>
</tr>
<tr>
<td>Amanda B10</td>
<td>130 live days</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Auger</td>
<td>3 live years</td>
<td>0.7</td>
<td>(min)</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>EAS-TOP</td>
<td>326 live days</td>
<td>-</td>
<td>(max)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euso</td>
<td>2.7 live years</td>
<td>18</td>
<td></td>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Glue</td>
<td>80 hours</td>
<td>0.11</td>
<td></td>
<td>-</td>
<td>0.011</td>
</tr>
<tr>
<td>Ice Cube</td>
<td>3 live years</td>
<td>1.1</td>
<td></td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Macro</td>
<td>5.8 live years</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rice</td>
<td>2.5 live years</td>
<td>2.7</td>
<td></td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Salsa</td>
<td>2 live years</td>
<td>34</td>
<td></td>
<td>39</td>
<td>130</td>
</tr>
</tbody>
</table>
SalSA: A Next Generation UHE neutrino detector

- ~25km3 in upper 3km of dome (75 km3 water-equiv.)
 - >2e denser than ice
 - easier to deploy than S.Pole

- Many competing effects make it not obvious which frequency is optimal:
 - attenuation, antenna effective height, Ch. emission formula, Ch. cone width, bandwidth, thermal noise
 - Monte Carlo used to study these events

- As long as attenuation length is smaller than dome, then optimum at longer wavelengths

- Calorimetric; large V,$\Delta \Omega$; Cherenkov polarization usable for tracking

- US likely TX or LA. Dutch investigating sites as well

Diapir action pushes out water
Salt Attenuation

Need to confirm with more sensitive attenuation length measurements

Measurements so far, consistent with 300K thermal noise
Simulated Events

Shower energy = 10^{19} eV

Neutrino direction: alt = 8°, az = 134°

alt = 28°, az = 239°

alt = 28°, az = 149°

alt = 28°, az = 59°

alt = 68°, az = 149°
Acoustic Detection

- **SAUND** J. Vandenbrouke et al., astro-ph/0406105
 - 7 Hydophones, subset U.S. Navy array (AUTEC)
 - Detection 7kHz to 50 kHz
 - Noise floor sets threshold $\sim 10^{23}$ eV
 - Reason to believe Salt detector will have lower threshold. Studies underway.
 - Possibility to detect events in salt with BOTH acoustic and radio. Relative timing gives extra distance handle
Roadmap for the Next Generation Salt Detector

- Have exhausted easy measurements
- Need to drill 5-7 boreholes in candidate salt domes
 - measure ambient noise
 - measure attenuation lengths
 - prototype sensors, triggering, readout
 - proposal forming for $2-5M to accomplish this in next 1-3 years
- Use data from R&D study
 - Be ready with full proposal when Anita, Auger, IceCube discover GZK neutrinos in the next 2-4 years
Conclusions
(for a particle physicist)

- Current generation of UHE ν telescopes will likely detect GZK-induced neutrinos in next 2-4 years
- Need to be prepared for this “beam” as particle physicists
 - Measure neutrino cross section
 - extreme proton structure
 - test for large-scale quantum gravity
 - Aperture for magnetic monopoles
 - best sensitivity for $\beta \sim 1$.
 - Anomalous neutrino decay (e.g., majorons)
 - Best L/E sensitivity. Measure flavor ratios.
- Large Salt Domes offer the possibility to turn the detection of a few GZK neutrinos into a sample of 100’s of events.
 - site selection, prototype arrays need to start soon
• Conclusion-II (for an astronomer):
Backup Slides
Comparison of Detector Discovery Potential: $[\Delta \Omega] \mathcal{E} \Delta t_{\text{live}}$

$\nu_e + \nu_\mu + \nu_\tau$ (Area * Steradians * Livetime$)/N_{90}$

(Some current, others projected)

- These are for 90%CL detection (i.e., divided by 2.3 if no bckgd)
- Only radio & acoustic limits currently above 10^{16} eV
- Will update a little for proceedings

Plots for other flavors etc. at http://www.physics.ucla.edu/~saltzbrg/uhenu.ps
Quantifying Detection

- \([A \Delta \Omega] \Delta t\) vs. energy (\& background) for each neutrino flavor describes experiment

 \[N_{obs} = \int I_E \times [A\Delta\Omega] \ dA d\Omega dEdt \]

 - For example: \([A \Delta \Omega]\) for a flat, black paddle = \(A\pi 2\pi\)
 - \([V \Delta \Omega] = [A \Delta \Omega] L_{int}\) accounting for neutrino cross section vs. energy
 - (Discovery potential also depends on background)

- Need many km\(^3\) of material to detect \(> 10^{15}\) eV

- Here I’ll give (my estimates of):

 - \(E_\nu^{\text{thresh}}\) (approx.)
 - typical \([V \Delta \Omega]\) and \(\Delta t\)
 - Compare at the end with \([A \Delta \Omega] \Delta t\) for detection
Z-bursts?

If local enhancement of local CNB:

\[\sqrt{2m_{\nu}^{\text{CNB}} E_{\nu}^{\text{UHECR}}} = M_Z \sim 10^{11} \text{eV} \]

if \(m_{\nu}^{\text{CNB}} \sim 0.05 - 0.5 \text{ eV} \)

\[\Rightarrow E_{\nu} \sim 10^{22} - 23 \text{ eV} \]

\[\Rightarrow \text{Would be a minimum flux of } 10^{23} \text{ eV neutrinos} \]
Astrophysics Motivations:
The range of photon astronomy

Radio Astronomy
<10^{-7} \text{ eV photons}

Atmospheric Cherenkov
>10^{12} \text{ eV photons}

...and everything in between
The end of photon astronomy

- No Extra-galactic photon astronomy beyond $\sim 10^{14}$ eV

- No cutoffs for neutrinos

Distance to M32

\[\gamma^+ \gamma_{IR} \rightarrow e^+ + e^- \]

\[\gamma^+ \gamma_{URB} \rightarrow e^+ + e^- \]
Beyond 10^{14} eV?

Astrophysical processes are producing particles over at least 7 more orders of magnitude.

Sources are still a mystery:

AGN, GRBs?

- could produce $\sim 1/E^2$ neutrino flux

Neutrinos would point back:

- Sources may produce neutrinos directly
- or indirectly ("GZK process")

$$p + \gamma_{2.7K} \rightarrow \Delta^* \rightarrow n + \pi^\pm$$

"guaranteed" neutrinos
How to instrument more than a few km^3 –sr?

Astrophysical processes are producing particles over at least 7{\textit{more}} orders of magnitude

Neutrinos would point back:

- Sources may produce neutrinos directly
- or indirectly ("GZK process")

$$p + \gamma_{2.7K} \rightarrow \Delta^* \rightarrow n + \pi^\pm$$

“guaranteed” neutrinos
A more detailed view of GLUE (since common to most radio detection)
SAUND Calibration

\[\sim 10^{21} \text{ eV!} \]

- Attenuation length >500-1000m
Developing Ideas

- Drone flights over deepest Antarctic Ice
 - use the best ice: 4km deep
 - closer ➔ lower threshold
 - instrument can be maintained

- Europa orbiter

Stay Tuned…
Other Acoustic Efforts
(Acoustic workshop Sept ’03)

- SADCO: Black Sea Oil Platforms and Kamchatka
- Hockley/Oakwood Domes. (Measurements begun)
- Europe
 - Mediterranean: Nemo, Antares
 - European Salt domes
 - Rona UK
- PZT sensors on Amanda under study

Summary slides at
Some on-board impulsive noise, will be removed for dedicated ANITA flight.

No evidence for off-payload impulsive noise beyond McMurdo Station horizon.
Anita Lite
Resolutions

Ground-to-payload pulse at ~250km
from Williams’ Field

375 MHz “tone burst”

Anita goal 300ps per antenna
Anita-lite already 120 psec

- Anita resolution on RF direction
 \[\delta \theta > 0.5^{\pm} \]
 \[\delta \phi > 2^{\pm} \]
SAUND
Neutrino Search

$E_\nu \sim 10^{22}$ eV

$[V \Delta \Omega] \sim 100$ km3-sr

Not enough…

but salt domes may prove 10£ more signal and much less background
FORTE satellite
(Fast On-orbit Recording of Transient Events)

- Main mission: synaptic lightning observation
- Viewed Greenland ice with appropriate trigger (1997-99)
 - 1.9 MILLION km³
 - 38 days £ 6%
- Can self-trigger on transient events 22MHz band in VHF band (from 30 to 300 MHz)
- Event characterization
 - polarization
 - ionospheric group delay and birefringence
 - timing

N. Lehtinen et al., PRD 69, 013008 (2004)
Salt Dome Detector
Noise and attenuation length measurements

P. Gorham et al., NIMA 490, 476 (2002)

- Attenuation >250m (>500 m w.e.)
 (even at 750 MHz)
- No evidence of birefringence or scattering
- RF environment protected by overburden. Noise level consistent with 300K.

- Estimated events/year
 - $100 \, R_X \implies 50/yr \text{ above } 10^{17} \text{ eV from AGN}$
 - $1000 \, R_X \implies 50/yr \text{ above } 10^{17} \text{ eV from GZK or 5-10 GRB}$