High precision QCD at hadron colliders

New techniques and results for perturbative calculations

Frank Petriello Johns Hopkins University

2005 Aspen Winter Conference February 2005

Outline

- Motivation and introduction
- Status of LO and NLO calculations
- Progress in NNLO calculations
 - Understanding infrared divergences at NNLO
 - Semi-inclusive" observables and Drell-Yan rapidity distributions
 - An IR solution at NNLO and Higgs production at the LHC
- Conclusions and outlook

Experimental prospects

- Precision physics at colliders: past, present, future
 - At LEP, SLC
 - Precision EW data a primary constraint on new physics models

At the Tevatron

- Expect $2 10 \, \mathrm{fb}^{-1}$ by LHC turn-on
- Reduction of Δm_t , ΔM_W by 50%
- At the LHC
 - In 1 year at 10 fb⁻¹: over 10⁷ $W, Z, t\bar{t}$ events $\Rightarrow \Delta \sigma_{stat} \ll 1\%$
 - Improved systematics (j, l energy scales, luminosity) from high statistics samples
- LHC measurements are systematics limited
- ⇒ expect percent level physics

The need for high precision

- Not all discovery channels produce dramatic signatures!
- Need control of distribution shapes, backgrounds, uncertainties, ...
- Measurement of EW parameters, PDFs, luminosity, new physics parameters all require theory input

Precision QCD

- Everything at hadron colliders involves QCD!
- Factorization in hadronic collisions

$$N_{events} = L \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \sigma_{ij}(x_1, x_2, \mu^2)$$

- luminosity measurement
- parton distribution functions
- scattering cross sections

Cross sections in QCD

 $\sigma = \sigma_0 \left\{ 1 + \alpha_S \left(\mathbf{l} + \sigma_1 \right) + \alpha_S^2 \left(\mathbf{l}^2 + \mathbf{l} + \sigma_2 \right) + \mathcal{O}(\alpha_S^3) \right\}$

- Strong coupling constant not small
 - $\alpha_S(M_Z) \approx 0.12 \Rightarrow$ higher order corrections important
- Contains scales $l = \ln(\mu^2/Q^2)$
 - Get scales from UV and IR renormalization
 - Scales are arbitrary: $\frac{d\sigma}{d\mu} = 0$
 - ⇒ but truncation of expansion at $\mathcal{O}(\alpha_S^n)$ induces a scale dependence of $\mathcal{O}(\alpha_S^{n+1})$
 - Residual scale dependences provide estimate of neglected higher order effects
- Resummation needed in phase-space corners
- Matching with parton-showers (HERWIG, PYTHIA)

From LO to NNLO

- Precision predictions at NNLO
- Also miss qualitative effects at lower orders
 - Few initial channels open; sensitivity to pdfs underestimated
 - Few jets in final state
 - Jets modeled by too few partons
 - Incorrect kinematics, e.g., no p_T

Anastasiou, Dixon, Melnikov, FP

Progress at LO

Efficient algorithms for multi-parton amplitudes known

- Use spinor helicity, color-ordering for amplitudes
- Need efficient phase-space generation; 20 variables describe final-state
- Automation achieved: ALPHGEN, COMPHEP, GRACE, HELAC, MAGRAPH, VECBOS (Mangano et.al.; Boos et.al.; Minami-Tateya coll.; Papadopoulos et.al.; Steltzer et.al.; Giele et.al.)
- Programs available for:
 - $W/Z/\gamma + N$ jets, $N \leq 6$
 - $W/Z/\gamma + Q\bar{Q} + N$ jets, $N \le 4$
 - $Q\bar{Q} + N$ jets, $N \le 4$
 - $Q_1 \bar{Q}_1 Q_2 \bar{Q}_2 + N \text{ jets}, N \le 2$
 - $Q\bar{Q}H + N jets, N \le 3$
 - nW + mZ + kH + N jets, $n + m + k + N \leq 8, N \leq 2$
 - $N \text{ jets}, N \leq 8$

Progress at NLO

- Many Higgs signal processes recently computed to NLO
 - $pp \rightarrow t\bar{t}H, b\bar{b}H$: Beenaker et.al.; Dawson et.al.
 - $pp \rightarrow jjH$ (WBF): Figy et.al; Berger, Campbell
- Matching to experimental Monte Carlos known: MC@NLO (Frixione, Webber)
- Programs available for 2 → 2 and some 2 → 3 processes: DIPHOX, HQQB, JETRAD, MCFM, NLOJET++ (Aurenche et.al.; Dawson et.al.; Giele et.al.; Campbell, Ellis; Nagy)
 - Missing many needed background processes:
 - No automation for 2 → 3, 4 virtual corrections (Giele et.al.; Nagy, Soper; Binoth et.al.)
 - Want flexible approach for LHC analyses
 - Many scales
 - Enormous expressions
 - Numerical instabilities
 - Much work needed before LHC!

The NNLO revolution

Tremendous progress recently in NNLO computations

- New computational techniques developed
- Many new phenomenological results

Is NNLO necessary?

- Reduced scale dependence
- More partons ⇒ more realistic
- Several concrete physical applications that require NNLO:
 - Higgs production at hadron colliders
 - Drell-Yan (luminosity monitor, PDF measurements)
 - Jet production at hadron colliders (PDFs, α_S extraction)
 - Jet production at e^+e^- colliders

 $\alpha_S(M_Z) = 0.1202 \pm 0.0003(\text{stat}) \pm 0.0009(\text{sys}) \pm 0.0009(\text{had}) \pm 0.0047(\text{th})$

Anatomy of a NNLO calculation

 \Rightarrow Need clever algorithms to handle!

Calculations at NNLO

- Loop integrals satisfy recurrence relations arising from Poincare invariance
 - Reduce to a small set of master integrals: efficient, automated algorithms available
 - Calculate the master integrals; known for many $2 \rightarrow 2$ processes
- Real radiation is currently the sticking point
 - Until recently, only fully inclusive results known for Drell-Yan, Higgs
 - \Rightarrow can't include experimental cuts, jet algorithms
- Tree graphs, so what's the problem?
 - Understanding IR singular structure when partons become unresolved
 - Recurrence relations, other algorithms, don't seem applicable, especially when phase-space constraints included
 - No apparent way of automating real radiation calculation
 - Problems with extracting IR singular structure before numerical integration

Methods for real radiation

Semi-inclusive observables

(Anastasiou, Dixon, Melnikov, FP)

- Basic idea: use optical theorem to adapt multi-loop techniques to phase-space integrals
- ⇒ Introduce a fictitious particle, whose mass-shell constraint ⇔ phase-space constraint

Loop integral methods now permit analytic calculations

Fully differential observables (Apastosian Malaikan ED)

- (Anastasiou, Melnikov, FP)
 - $d\Phi_n$ structure permits an automated structure of IR divergences
 - Derive cross-section as series in $1/\epsilon$; cancel poles numerically
 - No need for analytic integrations, automatically finds singular regions

Drell-Yan rapidity distributions

Used for pdf extraction, luminosity monitor

- NNLO corrections increase NLO result by 3-5%
- Scale variations 3-6% at NLO, < 1% at NNLO
- Drell-Yan now a high precision probe of QCD

PDF comparisons

- Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
- Scale variations render undistinguishable at NLO

PDF comparisons

- Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
- Scale variations render undistinguishable at NLO
- Resolved at NNLO

Fixed target DY (E866)

- **9** Strong constraint on \bar{q} and $x \to 1 q_{val}$ distribution functions
- Reduced μ dependence at NNLO reveals discrepancy with data
- \Rightarrow Tune \bar{q} pdfs

Fully differential Higgs signal at NNLO

• Study full decay chain $pp \rightarrow H + X \rightarrow \gamma \gamma + X$ at NNLO

- $\sigma_{\rm cut}/\sigma_{\rm inc} \approx 0.55 0.70$
- $K_{\rm cut}/K_{\rm inc} \approx 1.02 1.08$
- Can study $H \rightarrow WW, ZZ, \ldots$
- Can simulate Higgs signal at NNLO with all experimental cuts

- All ATLAS experimental cuts included
 - $p_{\perp}^{\gamma,1} > 40$ GeV, $p_{\perp}^{\gamma,1} > 25$ GeV; $|\eta^{\gamma}| < 2.5$
 - Isolation cut: $E_{\perp} < 15$ GeV within cone of R = 0.4

Di-photon distributions

• Photonic η and p_T distributions can be used to discriminate between signal and background

• $p_t = (p_{\perp}^{\gamma,1} + p_{\perp}^{\gamma,2})/2; Y_s = |\eta^{\gamma,1} - \eta^{\gamma,2}|/2$

- p_t background distribution has no peak at $m_h/2$
- **9** Y_s background distribution is flat (Bern, Dixon, Schmidt)
- Shapes are stable under perturbative corrections

Lessons

- We know how to handle IR singular structure at $\rm N^n LO$
- It's possible to perform NNLO calculations with all experimental cuts included
- Many applications now possible
 - Fully differential Drell-Yan
 - Jet production at hadron colliders
 - Radiative W decays
 - Top decays
 - $b \rightarrow c, b \rightarrow u$ transitions

Conclusions

- Exciting prospects for precision physics at future colliders
- Need theoretical work to fully utilize results
- Much more to do before LHC start
- Expect continued progress on several fronts
 - Quantification and reduction of pdf errors
 - Practical implementations of algorithms for NLO calculations
 - More completely differential NNLO calculations for high-value observables (W, Z, H, \ldots)
- Lots of room for new ideas!