Split Supersymmetry

Jay Wacker Stanford University

Feb. 14, 2005

Aspen Winter Conference 2005

The LHC is soon

Don't know what to expect

No theories appear "sure things"

Outline

MotivationsSplit susyPredictionsOutlook

Naturalness

Primary motivation for new theories

Supersymmetry

Doubles the number of particles

quark
$$\longrightarrow$$
 squark gauge boson \longrightarrow gaugino lepton \longrightarrow slepton 2 Higgs \longrightarrow Higgsinos

Predicts the Higgs mass (up to radiative corrections)

Susy particles @ TeV scale \longrightarrow gauge coupling unification

Lightest susy particle stable \longrightarrow Dark Matter

Adds 100+ new parameters

MSSM Pros & Cons

Circa 1986

Natural FCNCs

Gauge Coupling Unification CP Violation

Dark Matter Proton Decay

In 1991 LEP 1

Found gauge couplings unify

S & T Parameters were small

Absolutely sure that the Higgs would be found soon

Where are the new particles?

MSSM Pros & Cons

After LEP 2

Natural FCNCs

Gauge Coupling Unification CP Violation

Dark Matter Proton Decay

Higgs Mass

Is a prediction of susy, only depends weakly on parameters

Since 1991...

The Cosmological Constant has been measured

1998:
$$\Lambda = (1 \text{ meV})^4$$

Introduced a new scale in the Standard Model

Left us:

Look here

Ignore this

Outline

Motivations

Split susy

Predictions

Outlook

Living in a fine tuned universe

If the Higgs is fine tuned to be light,

is there anything to discover besides the Higgs?

Dark Matter

Gauge Coupling Unification?

Splitting Susy

Arkani-Hamed & Dimopoulos hep-th/0405159 Giudice & Romanino hep-ph/0406088

Imagine if susy is broken so that the gauginos and Higgsinos are light

(Fermion masses are protected by chiral symmetry)

One Higgs is fine tuned to be light

The gauginos/Higgsinos are the dark matter and lead to gauge coupling unification

Scales in Split Susy

$$M_{
m CC}$$

 10^{-15} TeV

Particles and Couplings

$$\widetilde{B} \ \widetilde{W} \ \widetilde{g} \qquad \widetilde{H}_u \ \widetilde{H}_d$$

$$\widetilde{H_u}$$
 $\widetilde{H_d}$

Higgs

Gauginos

Higgsinos

$$m_1\widetilde{B}^2 + m_2\widetilde{W}^2 + m_3\widetilde{g}^2 + \mu\widetilde{H_u}\widetilde{H_d}$$

$(\lambda)H|^4 - m^2|H|^2$

$$\kappa_u H \widetilde{H_u} \widetilde{W} + \kappa_d H^{\dagger} \widetilde{H_d} \widetilde{W}$$

$$\lambda = \frac{1}{8} (g^2 + g'^2) \cos^2 2\beta$$

$$\kappa'_u H\widetilde{H_u}\widetilde{B} + \kappa'_d H^{\dagger}\widetilde{H_d}\widetilde{B}$$

$$\kappa_u = g \sin \beta$$
$$\kappa_d = g \cos \beta$$

No gluino interactions!

5 Couplings from I parameter!

Outline

Motivations
Split susy

PredictionsOutlook

Gauge Coupling Unification

Squarks and Sleptons don't alter unification (One less Higgs doublet helps unification)

Gauge Coupling Unification

Squarks and Sleptons don't alter unification (One less Higgs doublet helps unification)

The Higgs Mass

Slow RG Evolution from $M_{
m susy}$ to weak scale

The New Unification

5 Couplings from 2 Parameters

Dark Matter Detection

Almost identical to MSSM (Fewer parameters/resonances)

Electric Dipole Moments

One phase in split susy

Feeds in at 2 loops to neutron EDM

DeMille/Yale Groups by 2007(?)

Arkani-Hamed, et al hep-ph/0409232

Long Lived Gluinos

 $m_{\tilde{q}} = 350 \; \mathrm{GeV}$ I per second is produced at the LHC

Must decay through squarks

$$au_{\tilde{g}} \simeq 2 \; \mathrm{sec.} \left(\frac{350 \; \mathrm{GeV}}{m_{\tilde{g}}} \right)^5 \left(\frac{M_{\mathrm{Susy}}}{10^6 \; \mathrm{TeV}} \right)^4$$

Can be cosmologically long lived

Limits from Gluinos

Outline

Motivations
Split susy
Predictions
Outlook

Split Susy

Different signatures to discover new particles

Fewer Coloured Particles

Tri-Lepton Signature Different

Long lived gluino

Split Susy

New measurements that are interesting

Yukawa unification

How to measure the lifetime of gluino?

Experimental confirmation

of a finely tuned universe

at future colliders