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Outline

This talk will be about gluon scattering amplitudes in QCD and
supersymmetric gauge theories. These are notoriously difficult
to compute, even at tree-level, so this is fertile ground for new
insights and methods. Even esoteric ideas from string theory
are welcome in this game, as long as they work!

Part 1: A review of some of the exciting progress at tree-level
and one-loop which has followed Witten’s discovery of rich math-
ematical structure hidden in these amplitudes [Witten (12/03)].

Part 2: New techniques for exploring the structure of multiloop
amplitudes [Cachazo, M.S., Volovich (01/06, and to appear)].
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Broad Goals of this Research Program

Explore the hidden mathematical structure in perturbative gauge
theory, and

Exploit that structure to help make previously impossible calcu-
lations possible (in some cases, not just possible but trivial).

Generally, we begin with supersymmetric gauge theories, where
the structure is simplest and new ideas are easiest to explore.
Most of the techniques I will describe can be applied, with some
effort, to other theories, including honest QCD.

At tree-level there is no distinction: tree-level gluon amplitudes
in QCD are secretly supersymmetric. One-loop QCD ampli-
tudes can be naturally split into a supersymmetric part and a
non-supersymmetric part.
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Tree Level

Why, in the 21st century, do we still find it useful to study tree amplitudes?

• Even just two years ago, few useful closed form expressions were known.

• Compact explicit formulas are better than numerical algorithms or re-

cursion relations for currents.

• Tree-level amplitudes form the basic building blocks of loop amplitudes

through unitarity ,

ImA1−loop ∼
∑

∫

AtreeAtree.

• A better understanding of the mathematical structure of tree-level am-

plitudes will guide us as we attack more complicated loop amplitudes.
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Twistor String Theory

Many recent advances have been made following Witten’s conjecture that
Yang-Mills theory (at least at tree-level) admits a description in terms of a
twistor string theory. The best evidence in favor of the existence of
twistor string theory is a mysterious formula, derived from string theory, which
recasts the problem of calculating any tree-level n-gluon scattering ampli-
tude into the problem of solving some polynomial equations. [Roiban, M.S.,
Volovich (03/04)].

= i(2π)4δ4(
∑
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In twistor string theory, amplitudes are calculated by an integral over certain
instantons, which are identified with curves in supersymmetric twistor space.

These curves can be connected or disconnected,

Our calculation was based on the former, but the latter were used to derive a
more computationally useful formula [Cachazo, Svřcek, Witten (03/05)].
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Fantastic, but not yet the end of the story...
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Consider the six-particle amplitudeA(1+, 2+, 3+, 4−, 5−, 6−). Instead of sum-
ming 220 Feynman diagrams [Berends & Giele (1987)], [Mangano, Parke, Xu
(1988)], we can write down the answer with just 6 CSW diagrams:

+1

+2 +3

4

56

=
[1 2]3

[2 η][η 6][6 1]

1

(p3 + p4 + p5)2
[η 3]3

[3 4][4 5][5 η]
+ 5 similar terms,

but a slightly more compact formula is [Roiban, M.S., Volovich (12/04)]

+1

+2 +3

4

56

=
〈1|2 + 3|4]3

(p2 + p3 + p4)2[2 3][3 4]〈5 6〉〈6 1〉[2|3 + 4|5〉

+
[6|1 + 2|3〉3

(p6 + p1 + p2)2[2 1][1 6]〈5 4〉〈4 3〉[2|1 + 6|5〉
.
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The eight-particle amplitude A(1−, 2−, 3−, 4−, 5+, 6+, 7+, 8+) would require
34,300 Feynman diagrams (probably never seriously attempted), or 44 CSW
diagrams:

+

+

+ +

=
[η 8]3

[8 1][1 2][2 3][3 η]

1

(p8 + p1 + p2 + p3)2
〈η 4〉3

〈4 5〉〈5 6〉〈6 7〉〈7 η〉

+ 43 similar terms

Again in this case there is a simpler formula (originally discovered “acciden-
tally” [Roiban, M.S., Volovich (12/04)])

+

+

+ +

=
[5|4 + 3 + 2|1〉3

(p2 + p3 + p4 + p5)2[2 3][3 4][4 5]〈6 7〉〈7 8〉〈8 1〉[2|3 + 4 + 5|6〉

+ 5 similar terms
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On-Shell Recursion

Where did these simple formulas come from? They were an unexpected
byproduct of one-loop amplitudes, whose infrared singularities are known on
general grounds to be proportional to tree amplitudes.

The general structure of these infrared singularities indicated [Roiban, M.S.,
Volovich (12/04)] that tree amplitudes should satisfy a quadratic on-shell
recursion relation.

Indeed, a precise recursion relation of the form

An =
n−2
∑

r=2

Ar+1

1

p2
r

An+1−r (1)

was formulated and directly proven in [Britto, Cachazo, Feng (12/04) & with
Witten (01/05)].
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Zigzag Diagrams

On-shell recursion relations are great, but explicit solutions are even better.
The BCFW recursion relation admits a closed form solution for ‘split helicity’
amplitudes [Britto, Feng, Roiban, M.S., Volovich (03/05)].

The amplitude A(1−, · · · , p−, (q + 1)+, · · · , n+) is given by a sum over all
‘zigzag diagrams’, of an expression which is trivial to write down

b4

1
2 q−1

q−23

q

q+1

q+2n−1
n

a1
a2

a3

b1b2b3

=
〈q|Pq,b1

Pb1+1,a1
Pa1+1,b2

···Pb4+1,1|1〉
3

P 2
q,b1

P 2
b1+1,a1

P 2
a1+1,b2

···P 2
b4+1,1

[q−1|Pq,b1
|b1〉〈b1+1|Pb1+1,a1

|a1]

× 〈b1 b1+1〉···〈b4 b4+1〉[a1 a1+1]···[a3 a3+1]
〈q q+1〉···〈n 1〉[2 3]···[q−2 q−1]

Zigzag diagrams are gauge invariant and a single zigzag diagram can en-
capsulate thousands or billions of individual Feynman diagrams.
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Tree Level—Solved

As promised, the tree-level techniques have been widely applied:

CSW rules:

• for gluons with fermions and scalars [Georgiou, Khoze 04/04], [Wu, Zhu 06/04],

• for amplitudes with quarks [Georgiou, Glover, Khoze 07/04], [Su, Wu 07/04],

• for Higgs plus partons [Dixon, Glover, Khoze 11/04], [Badger, Glover, Khoze 12/04],

• and for electroweak vector boson currents [Bern, Forde, Kosower, Mastrolia 12/04].

On-shell recursion relations:

• for amplitudes with gluons and fermions [Luo, Wen 01/05, 02/05],

• and for massive particles [Badger, Glover, Khoze, Svřcek 04/05],

• and for graviton amplitudes [Bedford, Brandhuber, Spence, Travaglini 02/05], [Cachazo,

Svřcek 02/05].
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One Loop

One-loop gluon amplitudes admit the decomposition

AQCD = AN=4 − 4AN=1
chiral + Ascalar.

I will discuss only the first term, AN=4, and provide references for the im-
pressive progress that has been made on the other two terms.
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Organizing Principle: Integral Basis

In the N = 4 theory, all integrals which appear in any Feynman diagram
calculation can be reduced to a set of scalar box integrals using Passarino-
Veltman reduction. (In N = 1, triangles also appear.)

In other words, scalar box integrals provide a complete basis for all one-loop
gluon amplitudes in N = 4.

A1−loop =
∑

boxes

(coefficient)

k1,...,i

ki+1,...,j kj+1,...,l

kl+1,...,n

The problem is to calculate all of the coefficients for a desired amplitude.
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Generalized Unitarity

Any supersymmetric one-loop amplitude is completely determined by its branch
cuts and discontinuities [Bern, Dixon, Dunbar, Kosower (1994)]. Therefore,
it is natural to use unitarity cuts to compute these coefficients =⇒ ‘unitarity
based method’ [Bern, Dixon, Kosower (1997,2000,2004)].

Each scalar box integral has has a unique leading singularity, and it looks
like the discontinuity of any desired amplitude across this singularity should
be given by a quadruple cut. However, there are two problems which used to
hinder the full utility of generalized unitarity.

K1

K2 K3

K4`
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The Importance of Twistor Space

The first problem is that it would appear that there is no such thing as a
quadruple cut, because the integral should localize onto those ` satisfying

{` : `2 = 0, (`−K1)
2 = 0, (`−K1 −K2) = 0, (`−K1 −K2 −K3)

2 = 0}

but in Minkowski signature there are no solutions!

A related problem is that the three-gluon amplitude vanishes on-shell, so the
quadruple cut (even if it existed) would provide no information if any corner
of the box has only a single external leg.

Both of these problems are solved if we work in signature (−−++) instead
of Minkowski space ([Britto, Cachazo, Feng (12/04)] and [Witten (12/03)] re-
spectively).

The lesson is that amplitudes in split signature (natural in twistor space) have
a richer structure of singularities, allowing all coefficients to be computed in
terms of tree-level amplitude via quadruple cuts.
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One-Loop— Supersymmetric Case Solved

These techniques have also been used to solve N = 1 amplitudes:

• All N = 1 MHV amplitudes from MHV diagrams. [Quigley, Rozali; Bedford, Brandhuber,

Spence, Travaglini (10/04)].

• All N = 1 NMHV amplitudes from quadruple cuts [Bidder, Bjerrum-Bohr, Dunbar,

Perkins (02/05)]

• A new basis of boxes and triangles allowing for all N = 1 amplitudes to be computed

from generalized unitarity [Britto, Buchbinder, Cachazo, Feng (03/05)]

and progress has been made on Ascalar, the last piece needed for real QCD:

• Non-rational piece of scalar “MHV” amplitudes [Bedford, Brandhuber, Spence, Travaglini

(12/04)].

• Recursion relations for rational pieces [Bern, Dixon, Kosower (01/05) and (05/05)].

• Clean separation of rational and non-rational pieces, leading to the full MHV 6-gluon

one-loop amplitude in honest QCD. [Bern, Dixon, Kosower (07/05)].
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What Was Known Pre-Twistors

Adapted from [Dixon, TASI 1995].
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Where We Are Now

Adapted from [Cachazo, Strings 2005].
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Two Loops and Beyond

I will now restrict my attention to maximially supersymmetric N = 4 Yang-
Mills theory—already here very little is explicitly known.

However, AdS/CFT suggests that the planar limit (gauge group SU(N) with
N → ∞) of N = 4 Yang-Mills theory should be remarkably simple, possibly
even integrable.

It is an interesting question whether we can see any sign of this simplicity in
the perturbative expansion of the theory—for example, perhaps we can sum
it explicitly?

An intriguing idea in this direction is that loop amplitudes satisfy iteration
relations. For example, at two loops it has been shown that...
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4
s2t +

1

4
t2s

=
1

8
s2t2






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































2

−
1

2
stf(ε) (2ε) −

π4

72
+ O(ε)

f(ε) = (ψ(1 − ε) − ψ(1))/ε [Anastasiou, Bern, Dixon, Kosower (2003)]

This identity is purely a property of Feynman loop integrals in scalar φ3

theory—a property which happens to have a nice application to Yang-Mills
theory!
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Iterative Structures

It has been conjectured that similar iterative relations hold to all loops,

M (L)(ε) = P (L)(M (1)(ε), . . . ,M (L−1)(ε)) + f (L)(ε)M (1)(Lε) + C(L) + O(ε)

but they have only been explicitly verified for the L = 2 and L = 3 [Bern,
Dixon, Smirnov (2005)] four-particle amplitudes.

This conjecture doesn’t come completely out of the blue—it is based upon

similar iterative structures which have been shown to hold for the infrared

and collinear singularities of multiloop amplitudes [Catani (1998)], [Sterman,

Tejeda-Yeomans (2003)].

That these iterative structures extend to the full amplitudes is the content of
the conjectures...
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Brute force analysis of these conjectures is tough, because explicitly eval-
uating these integrals is an exceedingly difficult task. The simplest integral
is:

−
1

2
st = −

2

ε2
+

1

4
L2 +

2π2

3
+ ε

[

−H001(x) − LH01(x)

−
1

2
L2H1(x) −

π2

2
H1(x) +

11π2

12
L+

17ζ(3)

3

]

+ε2

[

H0001(x) +H0011(x) +H0101(x) +H1001(x) −
1

2
LH001(x)

−LH011(x) − LH101(x) +
1

2
L2H11(x) +

π2

2
H11(x) +

1

12
L3H1(x)

−ζ(3)H1(x) +
π2

4
LH1(x) +

1

64
L4 +

π2

24
L2 −

ζ(3)

2
L+

41π4

720

]

+ε3 [37 terms] + ε4 [79 terms] + O(ε5)

where L = ln(x) and x = t/s. Adapted from [Bern, Dixon, Smirnov (05/05)]
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Some New Loop Technology

Clearly, new technology is needed to explore these kinds of iterative struc-
tures more easily at higher loops...

I will now explain a method which allows these relations to be studied without
the need to fully evaluate any loop integrals [Cachazo, M.S., Volovich
(01/06, and to appear)].
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Some New Loop Technology

STEP 1. We observe that any dimensionally regulated L-loop four-particle
Feynman integral can be written in the form (Mellin-Barnes representation)

=

∫ +i∞

−i∞

dy xyF (y, ε), where x = t/s,

for some function F (y, ε), which is relatively easy to determine—it follows
algebraically from the formula for the Feynman integral. For example,

=⇒ F (y, ε) = Γ(1+ 1
2 ε+y)Γ

2(y− 1
2ε)Γ

2(−y− 1
2ε)Γ(1− 1

2 ε−y).

The final integral over y is the really nasty one.
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Some New Loop Technology

STEP 1. Any four-particle integral =
∫

dy xyF (y, ε).

STEP 2. It we want to study some iterative equation, it is clearly tempting to
try to collect all of the terms appearing in some relation inside one y integral,
and then expand through O(ε) under the y integral.

This looks impossible, because F (y, ε) has poles which collide with the inte-
gration contour Re(y) = 0 at ε = 0, e.g.

F (y, ε) = Γ(1 + 1
2ε+ y)Γ2(y − 1

2 ε)Γ
2(−y − 1

2ε)Γ(1 − 1
2ε− y).

This signals that expanding in ε and performing the y integral do not com-
mute—we are not allowed to expand in ε under the integral. We call these
annoying poles obstructions.
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Some New Loop Technology

STEP 1. Any four-particle integral =
∫

dy xyF (y, ε).

STEP 2. Collect all integrals under a single y integral.

STEP 3. Kill all obstructions by means of a suitably chosen linear differential
operator, e.g.
(

(

x
d

dx

)2

− ε2

)2
∫ +i∞

−i∞

dy xyF (y, ε) =

∫ +i∞

−i∞

dy xy(y2 − ε2)2F (y, ε)

Now the poles at y = ±ε are completely removed, and it is safe to expand
in ε under the y integral.

Different integrals can have different numbers of obstructions; choose a dif-
ferential operator L which kills all of them...
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Some New Loop Technology

STEP 1. Any four-particle integral =
∫

dy xyF (y, ε).

STEP 2. Collect all integrals under a single y integral.

STEP 3. Kill all obstructions with a differential operator L.

STEP 4. We must fix the ambiguity introduced by acting with L. Fortunately,
the types of operators which we need to use have very simple kernels.

For example, at two loops, the only ambiguity is
a1

ε4
+
a2

ε2
ln2 x+ a3 ln4 x+ O(ε2).

Three numbers are a very small price to pay in exchange for being able
to unambiguously fix all polylog functions. In any case these numbers
can be fixed using infrared and collinear limits.
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Summary

Recent insights into the mathematical structure of perturbative
gauge theory has helped to make previously impossible calcu-
lations possible, and sometimes even simple.

Within a period of little over a year, tree-level Yang-Mills theory
was (more or less) completely solved, as was supersymmetric
Yang-Mills theory at one loop.

Prospects are good for significant progress on multiloop ampli-
tudes, especially in the N = 4 supersymmetric theory.
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