The Future of Neutrino Oscillation Measurements

David Reyna Argonne National Laboratory

3 Flavor Mixing Matrix

CKM Matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

where $\lambda \sim 0.2$

MNS Matrix

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\approx \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ \frac{-1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ \frac{1}{2} & \frac{-1}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Mixing Angles

Matrix Components:

3 Euler Angles $(\theta_{12}; \theta_{13}; \theta_{23})$ 1 CP phase (δ) (+2 Majorana Phases)

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

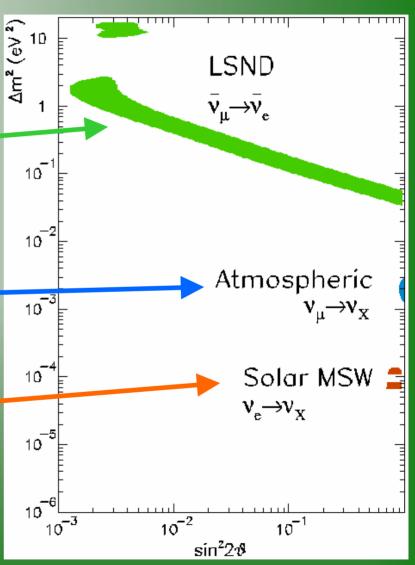
Atmospheric $(v_{\mu} \rightarrow v_{x})$

$$egin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \ 0 & 1 & 0 \ -s_{13}e^{-i\delta} & 0 & c_{13} \ \end{pmatrix}$$

The Next Big Thing?

$$egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \ \end{pmatrix}$$

Solar $(v_e \rightarrow v_x)$

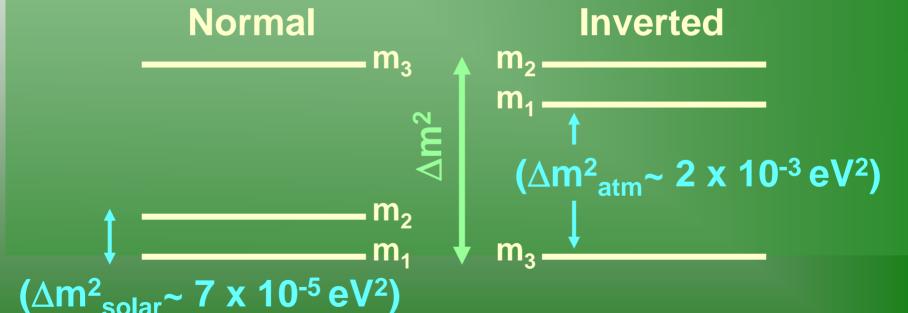


Current Experiments

Unconfirmed observation by LSND, currently being investigated by MiniBooNE. Would require the existence of sterile neutrinos or CPT violation.

Measured by Super-K and confirmed by Soudan2 and K2K.

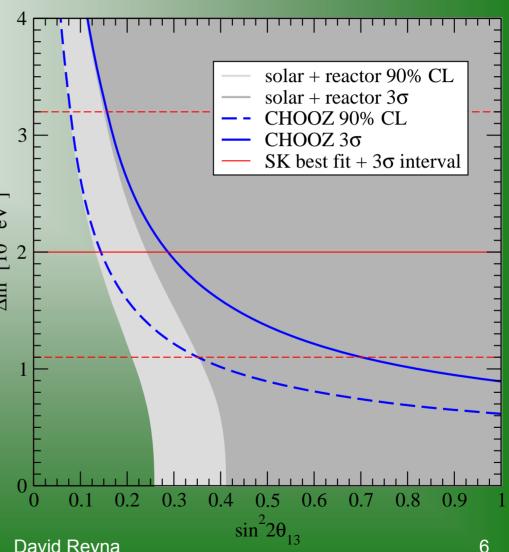
First observed by Ray Davis and collaborators. Measured by Super-K, SNO and KamLAND.



Δm² (aka: LSND problem)

• For 3 v only 2 independent mass differences $\Delta m_{13}^2 = \Delta m_{12}^2 + \Delta m_{23}^2$

Mass hierarchy unknown


Current θ₁₃ Bound

Current Limits are set by experiments which were not trying to measure θ₁₃

Optimization of the experiments for this goal

In currently allowed range $(\Delta m^2 = 1.3-3 \times 10^{-3} \text{ eV}^2)$

 $\sin^2(2\theta_{13}) < 0.19$ @ 90% CL

How to Measure θ_{13}

- Need for high precision requires 2 detector technique
 - Bugeye, MINOS and K2K
 - Allows errors from neutrino source to be eliminated from experimental results
- Appearance measurement
 - Accelerator "Off-axis" measurements look for small ν_e appearance in ν_u beam

$$P(v_u \rightarrow v_e) = \sin^2(2\theta_{13})\sin^2(\theta_{23})\sin^2(\Delta m_{atm}^2 L/4E)$$

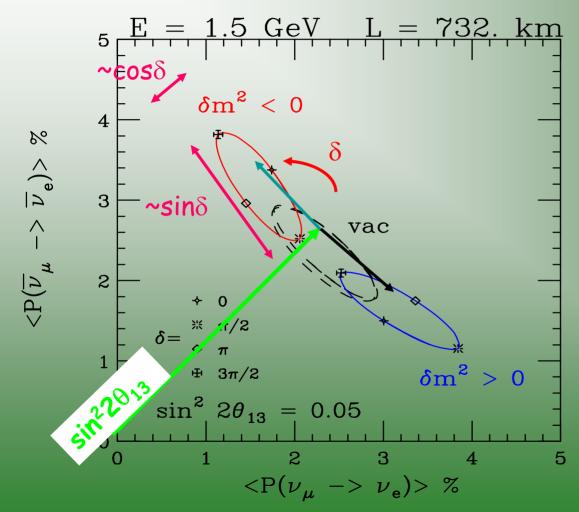
- Disappearance measurement
 - Reactor measurements look for small $\overline{\nu}_e$ disappearance from large isotropic flux

$$P(\overline{v_e} \rightarrow \overline{v_e}) = 1 - \sin^2(2\theta_{13}) \sin^2(\Delta m_{atm}^2 L/4E)$$

Off-Axis Difficulties

- Signature is electron appearance
 - Requires massive detector with fine granularity
- Backgrounds
 - v_e in the beam, (~1%, from μ , K_{e3}^{\pm} , K_{e3}^{0})
 - Fake v_e from v_τ , $\tau \rightarrow e$, (at high energy)
 - Showers which look like e's, particularly $\nu N \rightarrow \nu N \pi^0$, $\pi^0 \rightarrow \gamma \gamma$
- Measurement has degeneracies due to cp-violation and matter effects

ν_e Appearance in a ν_μ beam


$$\begin{split} &\mathsf{P}(\mathsf{v}_{\mu}\!\to\!\mathsf{v}_{e}) = (2\mathsf{c}_{13}\mathsf{s}_{13}\mathsf{s}_{23})^{2}\,\mathsf{sin}^{2}\Phi_{31} \\ &+ 8\mathsf{c}_{13}^{2}\mathsf{s}_{12}\mathsf{s}_{13}\mathsf{s}_{23}(\mathsf{c}_{12}\mathsf{c}_{23}\mathsf{cos}\delta - \mathsf{s}_{12}\mathsf{s}_{13}\mathsf{s}_{23})\mathsf{cos}\Phi_{32}\mathsf{sin}\Phi_{31}\mathsf{sin}\Phi_{21} \\ &- 8\mathsf{c}_{13}^{2}\mathsf{c}_{12}^{2}\mathsf{c}_{23}\mathsf{s}_{12}\,\mathsf{s}_{13}\mathsf{s}_{23}\mathsf{sin}\delta\,\mathsf{sin}\Phi_{32}\mathsf{sin}\Phi_{31}\mathsf{sin}\Phi_{21} \\ &+ 4\mathsf{s}_{12}^{2}\mathsf{c}_{13}(\mathsf{c}_{12}^{2}\mathsf{c}_{23}^{2} + \mathsf{s}_{12}^{2}\mathsf{s}_{23}^{2}\mathsf{s}_{13}^{2} - 2\mathsf{c}_{12}\mathsf{c}_{23}\mathsf{s}_{12}\mathsf{s}_{23}\mathsf{s}_{13}\mathsf{cos}\delta)\mathsf{sin}^{2}\Phi_{21} \\ &- 8\mathsf{c}_{13}^{2}\mathsf{s}_{13}^{2}\mathsf{s}_{23}^{2}(1 - 2\mathsf{s}_{13}^{2}\,)(\mathsf{a}\mathsf{L}/4\mathsf{E})\mathsf{cos}\Phi_{32}\mathsf{sin}\Phi_{31} \end{split}$$

 $a = constant X n_e E$

CP: $a \rightarrow -a$, $\delta \rightarrow -\delta$

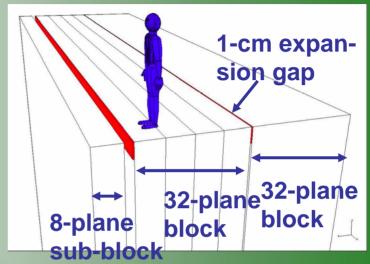
Understanding the Degeneracy

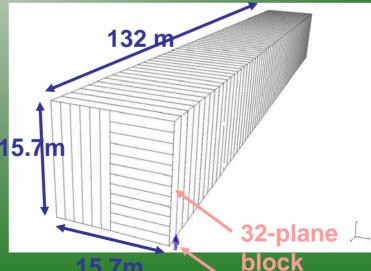
Minakata and Nunokawa, hep-ph/0108085

There are 2 Observables $P(\nu_{\mu} \rightarrow \nu_{e})$ $P(\overline{\nu}_{u} \rightarrow \overline{\nu}_{e})$

Interpretation in terms of $\sin^2 2\theta_{13}$, δ and sign of Δm^2_{23} depends on the value of these parameters and on the conditions of the experiment: L and E

Experimental Solutions


- If θ_{13} is large, the degeneracy can be broken with off-axis measurements
 - Measure both v and anti-v rates
 - Multiple experiments with different baselines and different energies
 - Will yield a rich physics program for cp-phase and mass hierarchy
- If θ_{13} is zero, degeneracies collapse but there's no attainable physics gain
- 2 Proposals underway
 - T2K (Japan)
 - NOvA (USA)

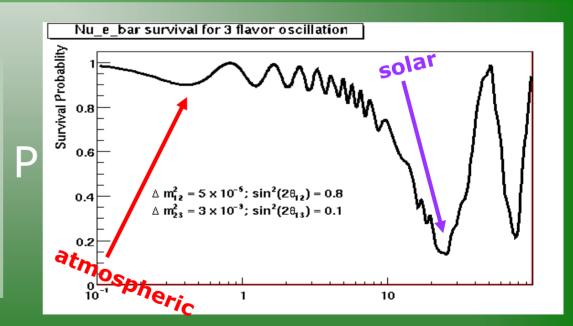


The NOvA Experiment

"Totally Active Detector"

- 30 kT:
 - 24 kT liquid scintillator
 - 6 kT PVC
- 32 cells/extrusion
- 12 extrusions/plane
- 1984 planes
- Cell dimensions:
 - 3.9 cm x 6 cm x 15.7m
- U-shaped 0.8 mm WLS fiber into APD
- Approved by Fermilab but awaiting funding from DOE
 - Ongoing R&D for detector
 - Expect to start civil construction in 2007

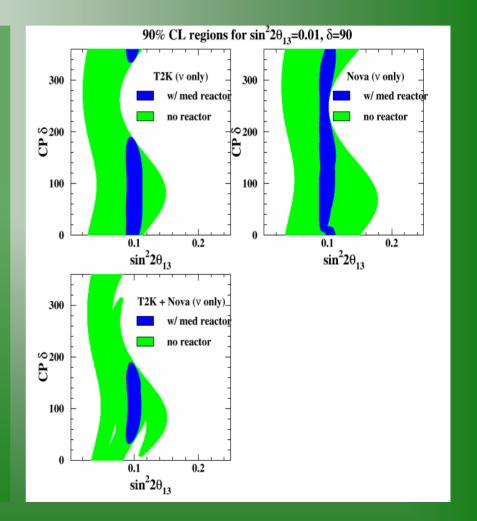
Admirer



The Reactor Measurement

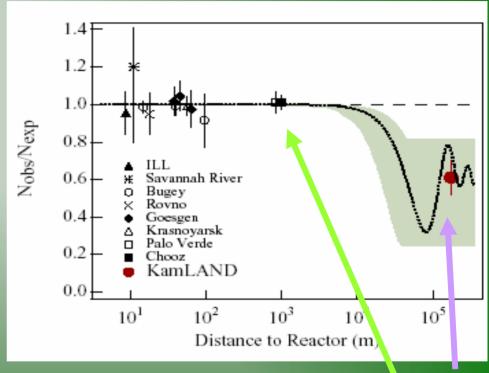
$$P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \sin^2 2\theta_{13} \sin^2(\Delta m_{atm}^2 L/4E) - \cos^4\theta_{13} \sin^2 2\theta_{12} \sin^2(\Delta m_{sol}^2 L/4E)$$

No CP-violation in a disappearance measurement


Distance (~1Km) is too short for matter effects

Reactor and Off-Axis Work Together

- Reactor experiments can be used to help off-axis experiments constrain the CP violation phase
- Also, the mass hierarchy can be determined in limited regions of parameter space, if $\sin^2 2\theta_{13} > 0.03$


Reactor Challenges

- Long term stability (Liquid Scintillator)
 - CHOOZ/Palo Verde were few month exp's
 - Next generation must be 3-5 years
- Backgrounds
 - CHOOZ measured ~10% with reactor off
 - Unlikely to duplicate reactor off data
- Systematic Error Control
 - Consistency of mechanical construction
 - Previous exp's were 2-3% (excluding reactor)
 - Needs to be 1% or less

Previous Reactor Measurements

- All measure the same energy spectrum.
- Previous experiments used single detector and were limited by 3% uncertainty in reactor power.
- KamLAND is first to see positive evidence of oscillation.
- Currently 6 proposed multi-detector experiments

KamLAND sees a 40% deficit/shape at 200km related to ∆m²₁₂

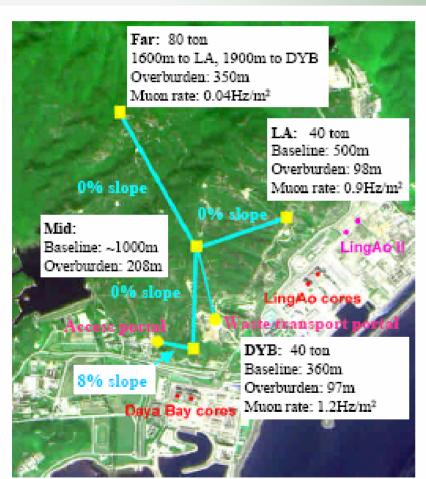
Search for a 1-5% deficit/shape at ~1 km related to Δm^2_{13}

Proposed Reactor Experiments

Reactor	Power GW _{th}	<power> GW_{th}</power>	Location	Detectors km/ton/MWE
Angra		5.3	Brazil	0.05/1/20 0.3/50/250 1.5/500/2000
Braidwood			Illinois US	0.27/[65×2]/464 1.51/[65×2]/464
Daya Bay	11.6 (17.4 after 2010)	9,9 (14.8 after 2010)	China	0.36/40/260 0.50/40/260 1.75/[40×2]/910
Double Chooz	8.7	7.4	France	0.15/10.2/60 1.067/10.2/300
KASKA	24.3	19.4	Japan	0.35/6/90 [×2] 1.6/[6×2]/260
RENO	17.3	16.4	Korea	0.15/20/230 1.5/20/675

16 February 2006

David Reyna
Aspen Winter Conference


Double Chooz

- Re-use existing Far Laboratory with improved detector
- Construct Near Laboratory at 200-300m.
- Extensive development has been completed
 - 1/5 Scale Prototype is filled with scintillator and undergoing long term testing
 - Engineering/cost estimates of Near Lab by EdF are complete
 - Will have more depth than previously hoped
- Awaiting funding from DOE (since Oct. 2004) to begin construction

Daya Bay

Total Tunnel length

 $3200 \, \mathrm{m}$

Detector swapping

in a horizontal tunnel cancels most detector systematic error. Residual error ~0.2%

Backgrounds

B/S of DYB,LA ~0.5%

B/S of Far ~0.2%

Fast Measurement

DYB+Mid, 2008-2009

Sensitivity (1 year) ~0.03

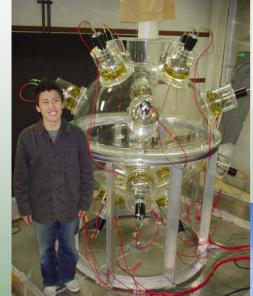
Full Measurement

DYB+LA+Far, from 2009

Sensitivity (3 year) < 0.01

Site Survey

Topography: Completed


Geological Survey: Completed

Geological Physical Survey: Jun.~Sep.

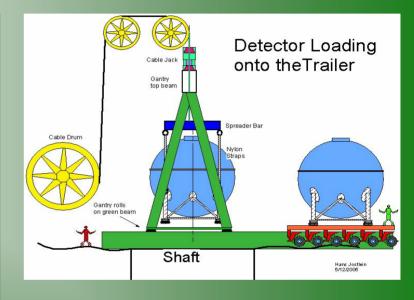
Bore-Hole Drilling: Oct.~Dec.

KASKA

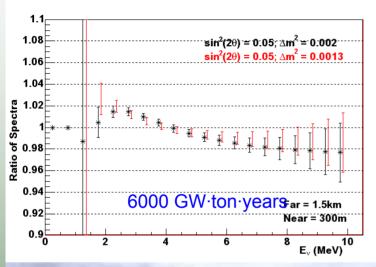
- Use Worlds most powerful reactor complex (7 cores)
- 3 detectors to compensate source uncertainties
- R&D Budgets have been obtained to perform
 - Prototype development
 - On site geology/ background study
- Requesting a full budget for JFY2006
- If approved this year, KASKA will take data from March/2009.

RENO

- Small scale project at a 6-core reactor complex
 - Studied experimental feasibility $(\sin^2(2\theta_{13}) > 0.03)$
- Ministry Of Science and Technology (MOST) has chosen the RENO project and included in the list of government budget request for 2006
- The Ministry of Finance approved the US \$9M proposal in Dec. 2005 after Congress review
 - RENO is now funded higher than any other reactor proposals
- Contacted the power plant and its local government → Promised their best cooperation upon approval
- A prototype with 40 liters of Gd liquid scintillator is under construction



Braidwood


- Focused on movable detectors to reduce systematic errors
- Initial geological surveys have been completed on site
 - Civil costs dominate for an experiment in the US
 (~ x10 detector cost)
- Development of scintillator at BNL is progressing
- Uncertain impact of recent news on tritium leak by Excelon in 2000.

Period	Near	Far	
Initial 3 months	A B		
3 year data run	A C	BD	
Final check	A D	ВС	

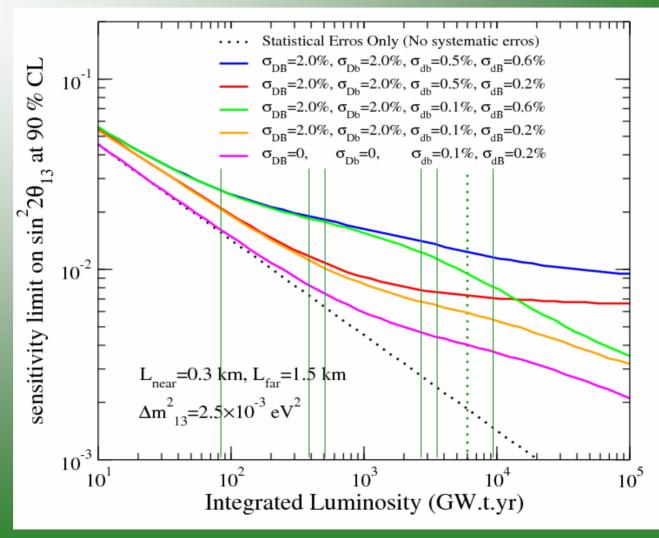
Angra dos Reis

- Make High Luminosity Measurement to See Oscillation in Energy Spectrum (KamLAND at 1.5km)
- Optimal Geology allows reduction of backgrounds to negligible level
 - Background ~1-2 ev/day
 - Signal ~1000 ev/day
- Working with reactor company and outside agencies to develop small prototype of a very near detector (65m from reactor core)
 - Outside funding already provided for geological surveys and construction cost estimates
 - Want to Develop needed technologies and demonstrate viability of energy spectrum techniques
 - Beginning setup of experimental site and prototype detector
 - Additional interest and assistance from Nuclear Non-Proliferation Agencies
- 3-5 year R&D program
- Full Experiment could begin in 2013

Proposed Schedules and Sensitivities

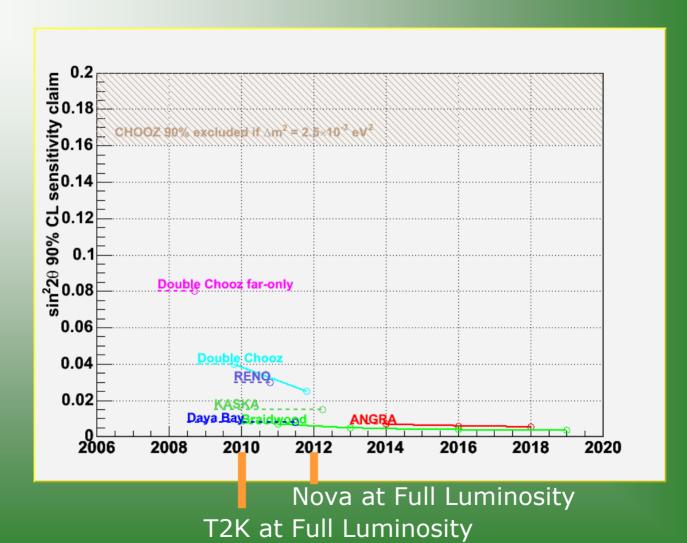
Reactor	Optimistic start date	GW-t-yr (yr)	$90\% CL$ $Sin^2 2\theta_{13}$ sensitivity	for Δm^2 (10 ⁻³ eV ²)	efficiencies	Far event rate
Double Chooz	Oct 07(far) Oct 08(near)	29(1) 29(1+1) 80(1+3)	0.08 0.04 0.025	2.5	0.8 ×0.9	15,000/yr
Daya Bay	08(fast) 09(full)	3700(3)	0.008	2.5	0.75×0.83	70,000/yr 110,000/yr (before/after 2010)
KASKA	Mar 09	493(3)	0.015	2.5	0.8×0.88	24,000/yr
RENO	Late 09	340(1)	0.03	2.0	0.8	18,000/yr
Braidwood	2010	845(1) 2535(3) 7605(9)	0.007 0.005 0.0035	2.5	0.75	41,000/yr
ANGRA	2013(full)	3900(1) 9000(3) 15000(5)	0.0070 0.0060 0.0055	2.5	0.8×0.9	350,000/yr

Systematic Errors Matter


conventions

➤ d/D: detectors

➤ b/B: bin (energy)


> capital: correlated

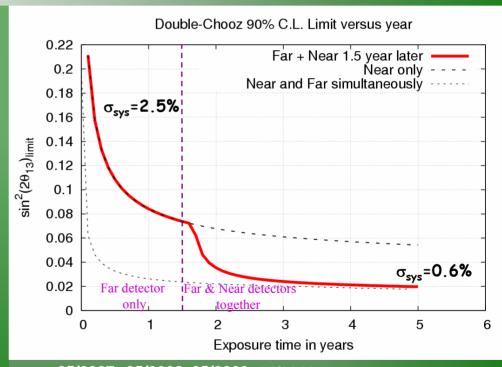
> small: uncorrelated

Proposed Schedules

16 February 2006

David Reyna Aspen Winter Conference

Funding in the US


- Reactor experiments made proposals to DOE and NSF in October of 2004
- A Neutrino Scientific Assessment Group (NuSAG) has heard proposals from US groups to work on T2K, NOvA, and Double Chooz, and R&D proposals for groups working on Braidwood and Daya Bay.
- A recommendation to DOE/NSF was expected in September-October 2005.

....still waiting

First Data expected from Double Chooz

- Europeans are not allowing delays to the schedule
- Far Detector begins data taking in 2007
- Near detector follows 16 months later
- Double Chooz can surpass the original CHOOZ bound in 6 months
- $\Delta m^2_{atm} = 2.8 \ 10^{-3} \ eV^2$ is supposed to be known at 20% by MINOS

05/2007 05/2008 05/2009 05/2010

Conclusions

- The future of the neutrino community is very bright
 - Focus on θ_{13} has produced a wealth of new proposals
- Off-Axis and Reactor measurements are complementary and each will help the other to gain maximum results
- Given the minimal costs (\$5-50 Million), multiple reactor experiments with different systematic approaches and different background conditions will provide redundancy and better confidence
- We look forward to exciting results within the next 3 years.