

LHC: Physics with 1 fb⁻¹

2006 Aspen Vinter Conference "Particle Physics at the Verge of Discovery 15 February 2006

> Rob McPherson Canadian Institute of Particle Physics and the University of Victoria

Thanks to (whether they know it or not): Fares Djama, Fabiola Gianotti, Adlene Hicheur, Joachim Mnich, Nikolai Nikitin, Luc Pape, Dan Tovey, Isabel Trigger

Assume detectors installed

- Some components incomplete for pilot run
 - ATLAS: 1/3 pixel layer, high η TRT (straw-tube tracker)
 - \blacklozenge CMS: high η RPC, some EC μ chambers, EC ECAL, pixels
 - Both: deferred high-level trigger (~ 2x reduction in LVL1 rate)
- (long) History of simulation studies, beam tests, commissioning at low and (very) high rates with
 - electronics (pulser) systems
 - cosmic rays
 - single beams (beam gas collisions / beam halo muons)
- ◆ Day 0: first collisions (2nd ½ of 2007 ?)
 - Detector shake-down, first analyses
- Day 1: first physics run (2008?)
 - pessimist: 100 pb⁻¹ / experiment
 - optimist: 10 fb⁻¹ / experiment

15 February 2006

Rob McPherson

I'm always optimistic will talk about days 0-1

	Expected Day 0	Goals for Physics
ECAL uniformity	~ 1% ATLAS ~ 4% CMS	< 1%
Lepton energy scale	0.5—2%	0.1%
HCAL uniformity	2—3%	< 1%
Jet energy scale	<10%	1%
Tracker alignment	20—200 μm in Rφ	<i>C</i> (10 μm)

Complete detector calibrations

- Fine tracking alignment + alignment with other systems
- EM energy scale, muon momentum scale, hadronic energy scale
- b-tagging
- Constant monitoring of detector conditions/problems with data

First Standard Model physics measurements

- Underlying event at $\sqrt{s} = 14$ TeV: absolutely critical
- Demonstrate ability to measure critical Standard Model processes, especially in regions "near" new-physics
- First searches for BSM physics
 - Initially: high cross-section, low (understood) background
 - But ready in all channels from very beginning

15 February 2006

The environment: cross-sections

Tracker alignment

- Will have already started with hardware systems, cosmic ray muons, etc.
- Large min-bias samples can be used for inner detectors
- Also need muons for alignment of muon system
 - Also provided low multiple scattering samples for inner trackers
- Global χ² techniques will be used eventually, but simpler local overlap methods will probably provide initial alignment
 - Eg: Overlap residual = inner hit residual outer hit residual

- Can achieve desired statistical precision with relatively small data samples
- Dead material understanding will take longer
- Will clearly be a goal of the first 10's of pb⁻¹
- Critical to have tools in place ahead of time ...

Can also use minimum bias events for early ECAL uniformity calibrations (before large Z → ee statistics available)
 Eg of CMS study with a few days of data-taking at 10³³ cm⁻²s⁻¹

Quickly approach the 1% level in barrel

15 February 2006

$Z \rightarrow ee, \mu\mu : e/\mu \text{ scales}$

- $\blacklozenge Z \rightarrow \ell \ell$: clean calibration channel for leptons
 - High rate (eg, 0.5 1 Hz @10³³cm⁻²s⁻¹, depending on trigger)
 - Nearly uniform η/ϕ coverage
 - Absolute mass scale near Mz
 - $Z \rightarrow \ell \ell \gamma$ will also be used for photon scale
- \diamond Z \rightarrow ee : example of a simple method
 - Split calorimeter in 2D (η/ϕ) "towers" around electronics
 - Assume each "tower" needs scale correction α_i
 - \blacklozenge Solve for "pairs" (can be overlapping) of α_i with MZ constraint

$$E_i^{new} = E_i^{true} * (1 + \alpha_i)$$

$$M_{ij} = M_{ij}^{true} * (1 + \frac{\alpha_i + \alpha_j}{2}) = M_{ij}^{true} * (1 + \frac{\beta_{ij}}{2})$$

Uses 170k $Z \rightarrow ee events$ About 2-3 days running at 10³³cm⁻²s⁻¹ (1-200 pb⁻¹) **448** η–φ **regions to** η=2.5 • $\Delta\eta \times \Delta\Phi = 0.2 \times 0.4$ Adjust "tower" size with increasing data

$\textcircled{W} \rightarrow jet jet: Jet Energy Scale$

 Use the mass constraint of the W in ttbar events, to set the JES / rescale jet to parton energy α = E_{parton} / E_{iet}

 $Mjj = \sqrt{2Ej1Ej2(1-\cos\theta j1j2)} = MW$

- Take into account E, η and φ in the minimization procedure and corrected energies and angles.
- E of parton and jet agree within ~ 1% over the range 50-250 GeV
- <u>Pros</u>: Good statistics, easily triggerable, small physics backgrounds.
- <u>Cons</u>: Only light q jets, limitations in E and η reach.

15 February 2006

Z/γ + jet: Jet Energy Scale

- @ 10³³cm⁻²s⁻¹ for p_T > 50 GeV
 - γ+jet: ~ 2 Hz
 - ♦ Z+jet: ~ 1/10 Hz
- Use the p_T balance between Z /γ and highest p_T jet
 - Jet p_T rescaled to balance Z p_T.
- Distribution syst. skewed by ISR <u>Pros</u>:
 - ♦ Enlarged E and η reach wrt W→jj,
 - includes 6% of b-jets,
 - large stats: γ+jet with p_T>20 GeV: ~10K events/min. (not incl. eff. & trigger)

Cons:

- Easy to introduce biases via selection,
- sensitivity to ISR modeling, esp at low p_T,
- background to γ or Z⁰ can add additional bias
- p_T range covered with good statistics limited.
- Needs prescaled trigger

Also use Z⁰ + b-jet to calibrate b-JES

Rob McPhe

(pljet - plgam)/plgam

Min-bias : underlying event

Charged particle density at η = 0

- Energy dependence of dN/dη?
 - Vital for tuning underlying event model
- Only requires only a few days of data (in principle) 15 February 2006

- PYTHIA models favour In²(s);
- PHOJET suggests a ln(s) dependence.

- Initially low luminosity and imperfect detector
 - Worry about
 - Early b-tagging
 - jet energy scale
 - detector problems
- Initially uncertainty on b-jet energy scale dominant:

b-jet scale uncertainty	δ M _{top}
1%	0.7 GeV
5%	3.5 GeV
10%	7 GeV
(10% on q-jet scale \rightarrow 3	B GeV on M _{top})

200

- Important to understand UE
 - ♦ → can have a large effect (as large as 5 GeV

on m_t) 15 February 2006

Top Mass : without b-tag

- Most important background for top: W+4 jets
 - Leptonic decay of W, with 4 extra 'light' jets
- Selection:
 - ♦ Isolated lepton with P_T>20 GeV
 - Exactly 4 jets ($\Delta R=0.4$) with P_T>40 GeV
- Reconstruction:
 - Select 3 jets with maximal resulting P_T
- Identify W peak (also useful for JES calibration)
- Select highest p_T 2 jet combination
 - W peak visible in signal
 - No peak in background
- W and Top peaks visible with 30 pb⁻¹

30 pb ⁻¹	σ(stat)
Mtop	3.2 GeV

15 February 2006

A bit more data ..

150 pb ⁻¹	σ(stat)
Mtop	0.8 GeV

- Quickly hit systematics limit
- Will move to b-tag analyses when possible
 - Background composition changes: jet combinatorics from top becomes more and more important

Standard Model

- $Br(B^0_s \to \mu^+ \mu^-) \approx 3.5 \times 10^{-9}$
- $Br(B^0_d \rightarrow \mu^+ \mu^-) \approx 10^{-10}$
- *Eg:* ATLAS (yes, "staged" ATLAS for early running)
 - Trigger: P_T(μ) > 6 GeV for |η(μ)|<2.5
 - ◆ Analysis optimized for S/√B
 - σ(Β→μμ) ≈ 80 MeV

Integral LHC Luminosity	ATLAS upper limit at 90% CL
100 pb ⁻¹	< 1.0×10 ⁻⁷
1 fb ⁻¹	< 1.5×10 ⁻⁸
10 fb ⁻¹	< 5.5×10 ⁻⁹

15 February 2006

μμ

 \mathbf{O}

$Z' \rightarrow ee/\mu\mu$: early golden search

Search for high mass Z' resonance decaying to ee or μμ Mass peak well separated from background

Typical SUSY event at LHC:

- Strongly interacting sparticles (squarks, gluinos) dominate production
 - ◆ Can have high cross-sections ⇒ good candidate for early discovery
- \diamond sleptons, gauginos etc. \widetilde{g} cascade decays to LSP.

q

- Long decay chains and large mass differences between SUSY states
 - Many high pT objects observed (leptons, jets, b-jets).
- If R-Parity conserved LSP stable and sparticles pair produced.
 - Large ETmiss signature
- Closest equivalent SM signature t \rightarrow Wb with W \rightarrow ℓ ν

15 February 2006

CMS SUSY Reach: 5σ discovery curves

Inclusive SUSY: Background Estimation

- Main backgrounds:
 - Z + n jets
 - W + n jets
 - ttbar
 - QCD
- Greatest discrimination power from E_T^{miss} (R-Parity conserving models)
- Generic approach to background estimation:
 - Select low E_T^{miss} background calibration samples;
 - Extrapolate into high E_T^{miss} signal region.
- Extrapolation is non-trivial.
 - Must find variables uncorrelated with E_T^{miss}
- We have learned a lot from Run II <u>but</u> one big difference:
 - no previous measurements at similar \sqrt{s}
- ATLAS Example: ~ 1 TeV SUSY scale, look at
 M_{off}=∑|p_Tⁱ| + E_T^{miss}

eff 21PT • • <u>15 February</u> 2006

q

Can produce Higgs in SUSY decay chains

- ◆ Can happen in MSUGRA, but even more allowed space if we don't assume h ↔ sfermion unification
- Good candidate for higgs discovery if SUSY true
- Initial CMS study:
 - ◆ 2 b-jets + E_T^{miss}

15 February 2006

Higgs in SUSY events (II)

CMS MSUGRA

Need to optimize non b-tag analyses for early data

Direct SM Higgs Search: depends on mass

Electron / muon reconstruction probably OK with early data
 ⇒ Higher mass Higgs is possible

15 February 2006

Lower mass Higgs Harder

3 channels contribute ~ 2σ with 10 fb⁻¹

- EM resolution
- EM uniformity
- γγ mass:

- Good b-tagging
- Reduce QCD background:
 - ♦ 4 b-tags
- Hadronic transverse mass resolution

- Forward jet tag
- Good central jet veto
 - $\blacklozenge \ \Rightarrow \tau \text{ ID}$

- b-tagging, final EM resolution/uniformity, forward jet reco ...
 - ◆ ⇒ Lower mass Higgs (eg: < 130 GeV) will take significant detector/data understanding</p>
 - (Not just a luminosity question ...)
 15 February 2006
 Rob McPherson

Summary

- The first priority of early LHC collision will be to push detector understanding
 - Calibrations
 - Dead/hot channel characteristics/understanding
 - Dead material understanding ...
- Basic Standard Model measurements critical
 - Underlying event, parton distribution functions, ...
 - SM processes "near" possible new physics
 - Top/W masses will be systematics dominated from early-on
 - Many other SM opportunities (eg, $B^{0}_{s} \rightarrow \mu^{+} \mu^{-}$)
- First searches for clean processes with high crosssections next
 - High mass Z', SUSY are strong candidates
- Don't expect early SM light higgs results
 - But that's not really what we want to discover in any case ...