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Funkadelic, “standing on the verge of getting it on”

\!

« Flavor physics 1s especially approprate

R

topic at this conference:

A

¢ have been on the verge of discovery of New
Physics for a while...



¢ New physics effects in flavor sector are
(almost) guaranteed

2¢ Potentially large signals in FCNC

interactions which are suppressed in SM.

s¢ Flavor physics probes VEery high scales
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NP Models typically contain large

numbers of flavor changing interactions

and CP phases.

Even if there are no new flavor changing
interactions, they are induced by

“misalignment” of SM helds.
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s¢ Minimal Flavor Violation
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V| from semi-leptonic b — u fv
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2¢ To 1dentity effects of new physics:

2¢ Use tree-level determination of CKM,

A

2t calculate loop processes, search for
(pattern of) dewviations

% MFV, NMFV, ... 7
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[Limitation: experimental precision and
ability to calculate hadronic effects
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¢ — this talk.



A

¢ (Not entirely) inclusive B-decays

N2

¢ Dealing with experimental cuts
¢ With SCET from all orders to two loops

% Towards B — X v at NNLO
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« Exclusive B-decays

Al
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¢ With SCET from one-loop to tree level

s¢ Hadronic input from B N (R 7
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INCLUSIVE DECAYS

v, B— X,y

B—XJ/tv, B— X,



METHODS

exp. cuts method | hadr.anput
X oy loose OPE, ﬁ é
- Er1GeV HOEES ey s
intermediate | MSOPE, |15 g
— X A2
Eyv>Eo=2GeV SEET=" A=
severe, tactorization, S(w), Si(w)’

MX<MD SCET mp




Hard part:
expand 1n 1/my,
perturbative
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s¢ Fully inclusive B-decay can be calculated
using the OPE in an expansion in 1/m;

Al

St Nonperturbative Input: matrix elements of
local operators
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) are evaluated

s¢ Coethicients ¢; = ¢; (s,

in perturbation theory

A

¢ Expansion 1n 1/(mb = mc) ~ 1/mb

.

¢ With predictions and measurements of
moments of decay spectra:

V| = (42.0+0.7) x 107°  mp(mp) = (4.20 £+ 0.04)GeV

12 = (0.40 £ 0.04)GeV?  m.(m.) = (1.24 £ 0.07)GeV

Bauer et. al. ‘04; Gambino et al. ‘04, Buchmiiller and Flicher ‘05
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¢ To discriminate against the huge 6—¢
background, cuts need to be imposed

which entorce My < Mp.

A

2t Decay products with large energy but
small invariant mass: OPE breaks down!

s¢ Still possible to expand in 1/Ex. = Soft-
Collinear Effective Theory

3¢ Three scales: hard pp, ~ my, soft po ~ A

Al

% Intermediate, jet-scale i ~ \/ Amy



QCD

Rese o B
‘ 0000QQ00000

(2

Factorization theorem
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hard jet soft

shape function

Korchemsky, Sterman ‘94

Soft-Collinear Effective Theory

collinear fields
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T~ H*(pn)U (pn, i) J (i) @ U (s pro) @ S(peo)
QCD —  SCET —  HQET

¢ Resummation of (Sudakov) logs using two-step
matching and RG evolution 1n effective theory.

¢ New: general solution of evolution equations in
momentum instead of moment SPACE. Lange, Neubert ‘03

Bauer and Manohar ‘03
S

¢ Shape function develops radiative tail. ™ posch et al. ‘04

A

¢ New: NLO resummation. Involves 3-loop cusp
anOmalOUS dimenSiOl’l! Moch, Vermaseren, Vogt ‘04 TWO"IOOP

Kochemsky, Marchesini ‘93

anomalous dimensions for J and S.  Neuer 04 Gardio4,

TB and Neubert ‘05



Lee & Stewart ‘04
Korchemsky, Sterman ‘94 Bosch, Neubert, Paz ‘04
Beneke et al. ‘04

A

2t Factorization of power corrections using

SCET!

NA

¢ Same shape function (W) enters B — X,y
and B — X, /v at leading power.

s¢ Different combination of the subleading
shape functions in the two decays.



¢ Lange, Neubert and Paz ‘05: theoretical
expressions which incorporate all known
contributions to differential decay rate

¢ NLO result near end-point. Leading shape
function from B — X7y, models for

subleading shape functions.

st reproduces 1-loop OPE result when
integrated.
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Other possibility: shape tunction independent
relations between B — X fvand B — X7

Neubert 93
de Cay SPeCtra‘ Leibovich et al. ; Neubert ‘00

Lange et al. ‘05



INCLUSIVE Vyg=(4.38+0.29)x103

error budget

Stat

2.2%

Syst.

2.5%

b—c

1.9%

b6 o

O

2.2%

SF

4.7%

sub SF

5200

Total

7.6%

CLEO (endpoint)

4.02+ 047 +0.35 — -
BELLE (endpoint)

4.82+0.45=0.31
BABAR (endpoint)

423 +0.27 +0.31 *—
BABAR (E., %)

4.06 = 0.27 = 0.36 1
BELLE m

4.08 £ 0.27 + 0.25 5
BELLE sim. ann. (m y, q°)

438 + 0.46 + 0.30 *
BABAR (my, q°) '

476 £ 0.34 + 0.32
Average +/- exp +/- (mb,theory)

4.38 +0.19 = 0.27 ‘,

v*/dof = 5.9/ 6 (CL = 43.0%)
HQ input fr?m b—clvandb— sy moPenté
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2¢ FCNC process, stringent constraint on

New Physics.

A

s¢ Current experimental uncertainties match
theoretical uncertainty in the prediction of

the (cut) rate. E.g. Belle ‘04
Br(E, > Eg = 1.8GeV) = (3.38 £ 0.30 + 0.29) x 10~*

A

s¢ Lower values of cut energy Fy . (BaBar has

Fo=1.9 GeV.)



2« NNLO calculation of the rate 1s underway.

¢ Reduce perturbative uncertainty

¢ Reduce dependence on the choice of scheme for
m.. (NLO: 10% shift between pole and MS mass.)
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Most ambitious flavor physics calculation!
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@ 2- and 3-loop matching at p=Mw.
Misiak & Steinhauser ‘04

3- and 4-loop anomalous dimensions.
3-loop: Gorban, Haisch, Misiak ‘04,’05

2- and 3-loop matrix eleme,nts
n_f-parts: Bieri et al. ‘03. Q7: Blokland et al. ‘05
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Cut on the photon energy? For what value
of F£p1s OPE for the cut rate valid?



Neubert ‘05
shape function e

NS my — 2E0 1GeV

A=mp—my

Al

s¢ Integral over S can be evaluated in OPE it

energy window A is large enough.
2« OPE 1s expansion in A/A , a,(A) ]

¢ NLO: Br(E, > 1.8GeV) = (3.381 745 0 35) x 10~°

pert. param.



A

5¢ Perturbative error dominant.

.

s« Parametric uncertainties can be reduced

with precise £y moment measurements.
NNLO predictions available neubert ‘05, 06

(E,) ~my (E2) = (B,)? ~ 4i2

.

¢ New: 2-loop calculations of jet-function
and partonic shape function. Cut-effects to

NNLO TB and Neubert ‘05 & to appear
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@ Consistency check:

2% Red: B — X .V moments
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and NNLO B — X.v moments

68% and 90% c.l. contours
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¢ Reduced scale dependence.
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S Fairly large NNLO correction!
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st QCD tactorization vs. SCET

A

¢ Comparison of SCET analysis of
B—= MMy, of Bauer et al. to QCD

factorization results of Beneke et al.

-t Hadronic input from B—=T11 1V

Al

2¢ Formfactor constraints + Exp. + Lattice

—7.(0), Ap



Beneke, Buchalla, Neubert, Sachrajda ‘99

meson LCDAs
| (“wave functions”)

Hard kernels ,
(perturbative) not factorized
by BBNS
F B —>7T — O>
Same Factorization Jet-function

(interm. scale)

theorem in SCET!!



E Hard kernels

to O(0)

LLCDAs and F(q2=0) oo Jet-function « s ()

light-cone sum rules

Estimate dominant power corrections.



Bauer, Pirjol, Stewart, Rothstein ‘04

ITB_>7T (q2 — O) ~+

from fit to B — 7m. BPRS find two parts

are comparable 1n size! Xs(x;) suppression?

[Leave (charming) penguins unfactorized.
Neglect all power corrections.



¢ “SCET approach”:

@ Model independent; no dependence on
light-cone sum rules.

O might not be very precise: no power and
no perturbative corrections. (BBNS find
large power corrections.)

O More modest/less predictive. Penguins
from fit, strong phases from fit, ...



dl'(B — wfv) G%
dg? 2473

‘pw‘ |Vub‘ |F—|-( )|

Al

2¢ New measurements can be used to extract

both F(¢° = 0) and, with help from lattice
H ~ ¢B 0 J &) ¢7T

Al

2¢ Challenging! Have three- and five-bin

measurement of partial decay rate.

Al

st Extrapolation to g% = 0! For H need first
derivative of F, and Fyat ¢*=0.

s Iy from lattice.
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A

2t Constrained series parameterization:

N2

% Map ¢ — 2(¢?) . Improved convergence
of series |2|max ~ 0.5.

¢ Bound A < 1 from unitarity.

A3
5¢ Much stronger bound A4 ~ e from
b

heavy-quark power counting. “TB, Hill ‘05
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s¢ Current experiments measure Intersect and
slope, but cannot yet resolve curvature.

2¢ No need for model parameterizations.



Exp. data and Fy (16GeV?) = 0.8 + 0.1

0.8
Vip| =3.7+£0.2735 £0.1 = (3.7£0.2) x ,
£, (16 GeV?) A<l
€
F.(0)=0.25+0.04 +£0.03+0.01 = (0.25+0.04 - 0% ;
(m2B—m72T)F+(O) =154+£06+£04, A<0.1 ]
F.(0) . :

S 1t <V.
Factorization test:

(B~ — 7~ m°)

— 0.76 7922 + 0.05 GeV?,

dT(B° — 7tl=v)/dg?| 2=

Naive fact: 0.62 £0.07 BBNS: 0.66%);s BPRS: 1.27%] 52
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2t Impressive progress 1n calculation of
inclusive B-decays

5¢ NLO (even some NNLO) resummations

Al

5¢ Factorization of power corrections

NA

5 First 2-loop results for partial decay
rates, more to come.

Al

s Calculation of exclusive decays suffer from
our lack of knowledge of input parameters.

A

¢ Semileptonic decays can provide some of
these.



