PROGRESS IN HEAVY FLAVOR THEORY

THOMAS BECHER

Funkadelic, "standing on the verge of getting it on"

- Flavor physics is especially appropriate topic at this conference:
 - have been on the verge of discovery of New Physics for a while...

- New physics effects in flavor sector are (almost) guaranteed
 - Potentially large signals in FCNC interactions which are suppressed in SM.
 - # Flavor physics probes very high scales
 - NP Models typically contain large numbers of flavor changing interactions and CP phases.
 - Even if there are no new flavor changing interactions, they are induced by "misalignment" of SM fields.
 - **Minimal Flavor Violation**

TREE-LEVEL TRIANGLE

- $W_{ub} \sim \bar{\rho} i\bar{\eta}$ from tree level processes only
 - $|V_{ub}|$ from semi-leptonic $b \to u \ell \nu$
 - # Angle γ from $B^{\pm} \to D^{(*)}K^{\pm}$

STRATEGY

- To identify effects of new physics:
 - W Use tree-level determination of CKM,
 - calculate loop processes, search for (pattern of) deviations
- Limitation: experimental precision and ability to calculate hadronic effects
 - ★ this talk.

OUTLINE

- ** (Not entirely) inclusive B-decays
 - Dealing with experimental cuts
 - ** With SCET from all orders to two loops
 - lpha Towards $ar{B} o X_s \gamma$ at NNLO
- Exclusive B-decays
 - With SCET from one-loop to tree level
 - $\ref{Hadronic input from } \bar{B}^0 \to \pi^+ \ell^- \bar{\nu}$

INCLUSIVE DECAYS

 $ar{B} o X_c \ell \nu \,, \; ar{B} o X_u \ell \nu \,, \; ar{B} o X_s \gamma$

METHODS

	exp. cuts	method	hadr.input
$ar{B} ightharpoonup X_c \ell u$	loose Et>1GeV	OPE, HQET	$\frac{\mu_{\pi}^2}{m_b^2}, \frac{\mu_G^2}{m_b^2}, \dots$
$ar{B} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	intermediate $E_{Y}>E_{0}\approx 2 \text{GeV}$	MSOPE, SCET	$\frac{\mu_\pi^2}{\Delta^2} , \frac{\mu_G^2}{m_b^2}, \dots$
$ar{B} o X_u \ell u$	severe, M _X <m<sub>D</m<sub>	factorization, SCET	$S(\omega), \frac{S_i(\omega)}{m_b}, \dots$

- Fully inclusive B-decay can be calculated using the OPE in an expansion in $1/m_b$
- Nonperturbative input: matrix elements of local operators

V_{CB} DETERMINATION

$$\Gamma(B \to X_c \ell \nu) = \frac{G_F m_b^5}{192\pi^3} |V_{cb}|^5 \left[c^{(0)} \left(1 - \frac{\mu_\pi^2}{m_b^2} \right) + c^{(2)} \frac{\mu_G^2}{m_b^2} + \mathcal{O}\left(\frac{1}{m_b^3} \right) \right]$$

- ** Coefficients $c_i \equiv c_i(\alpha_s, \frac{m_c}{m_b})$ are evaluated in perturbation theory
- ** Expansion in $1/(m_b m_c) \approx 1/m_b$
- With predictions and measurements of moments of decay spectra:

$$|V_{cb}| = (42.0 \pm 0.7) \times 10^{-3}$$
 $\bar{m}_b(\bar{m}_b) = (4.20 \pm 0.04) \text{GeV}$
 $\mu_{\pi}^2 = (0.40 \pm 0.04) \text{GeV}^2$ $\bar{m}_c(\bar{m}_c) = (1.24 \pm 0.07) \text{GeV}$

INCLUSIVE VUB

- To discriminate against the huge $b \rightarrow c$ background, cuts need to be imposed which enforce $M_X < M_D$.
- Decay products with large energy but small invariant mass: OPE breaks down!
- Still possible to expand in $1/E_X$. \Rightarrow Soft-Collinear Effective Theory
- ** Three scales: hard $\mu_h \sim m_b$, soft $\mu_0 \sim \Lambda$
 - # Intermediate, jet-scale $\mu_i \sim \sqrt{\Lambda m_b}$

Factorization theorem

$$\Gamma \sim H^2 J \otimes S$$

hard jet soft shape function

Korchemsky, Sterman '94

SCALE SEPARATION

$$\Gamma \sim H^2(\mu_h)U(\mu_h,\mu_i)J(\mu_i) \otimes U(\mu_i,\mu_0) \otimes S(\mu_0)$$
QCD \longrightarrow SCET \longrightarrow HQET

- Resummation of (Sudakov) logs using two-step matching and RG evolution in effective theory.
- New: general solution of evolution equations in momentum instead of moment space. Lange, Neubert '03
- Shape function develops radiative tail. Bauer and Manohar '03 Bosch et al. '04
- New: NLO resummation. Involves 3-loop cusp anomalous dimension! Moch, Vermaseren, Vogt '04 Two-loop anomalous dimensions for J and S. Kochemsky, Marchesini '93 Neubert '04, Gardi '04, TB and Neubert '05

POWER CORRECTIONS

$$\Gamma \sim H^2 J \otimes S + \frac{1}{m_b} \sum_i H_i J_i \otimes S_i + \dots$$

Korchemsky, Sterman '94

Lee & Stewart '04 Bosch, Neubert, Paz '04 Beneke et al. '04

- Factorization of power corrections using SCET!
- Same shape function $S(\mathbf{W})$ enters $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_u \ell \nu$ at leading power.
- Different combination of the subleading shape functions in the two decays.

STATE OF THE ART

- Lange, Neubert and Paz '05: theoretical expressions which incorporate all known contributions to differential decay rate

 - ** reproduces 1-loop OPE result when integrated.
- Other possibility: shape function independent relations between $\bar{B} \to X_u \ell \nu$ and $\bar{B} \to X_s \gamma$ decay spectra.

 Neubert '93
 Leibovich et al.; Neubert '00
 Lange et al. '05

INCLUSIVE VUB=(4.38±0.29)×10-3

error budget		
Stat	2.2%	
Syst.	2.5%	
b→c	1.9%	
b 760	2.2%	
SF SF	4.7%	
sub SF	3.5%	
Total	7.6%	

$\bar{B} o X_s \gamma$

- ** FCNC process, stringent constraint on New Physics.
- Current experimental uncertainties match theoretical uncertainty in the prediction of the (cut) rate. E.g. Belle '04

$$Br(E_{\gamma} > E_0 = 1.8 GeV) = (3.38 \pm 0.30 \pm 0.29) \times 10^{-4}$$

Lower values of cut energy E_0 . (BaBar has E_0 =1.9 GeV.)

- ** NNLO calculation of the rate is underway.
 - Reduce perturbative uncertainty
 - Reduce dependence on the choice of scheme for m_c . (NLO: 10% shift between pole and MS mass.)
- Most ambitious flavor physics calculation!
 - ✓ 2- and 3-loop matching at µ=Mw.

Misiak & Steinhauser '04

- □ 3- and 4-loop anomalous dimensions.
 3-loop: Gorban, Haisch, Misiak '04,'05
- □ 2- and 3-loop matrix elements n_f-parts: Bieri et al. '03. Q7: Blokland et al. '05
- Cut on the photon energy? For what value of E_0 is OPE for the cut rate valid?

TRANSITION BETWEEN SHAPE-FUNCTION AND

OPE REGIME: MULTISSCALEOPE

shape function

 $H \times J$

Neubert '05

$$\int_{-\bar{\Lambda}}^{\Delta} d\omega \, S(\omega) \, f(\omega)$$

$$\Delta = m_b - 2E_0 \approx 1 \text{GeV}$$

$$\bar{\Lambda} = m_B - m_b$$

- ** Integral over S can be evaluated in OPE if energy window Δ is large enough.
- \ref{OPE} is expansion in Λ/Δ , $\alpha_s(\Delta)$!
- ** NLO: Br($E_{\gamma} > 1.8 \text{GeV}$) = $(3.38^{+0.31+0.32}_{-0.42-0.30}) \times 10^{-4}$ pert. param.

- * Perturbative error dominant.
- ** Parametric uncertainties can be reduced with precise E_{γ} moment measurements. NNLO predictions available Neubert '05, '06

$$\langle E_{\gamma} \rangle \sim m_b$$
 $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2 \sim \mu_{\pi}^2$

New: 2-loop calculations of jet-function and partonic shape function. Cut-effects to NNLO

TB and Neubert '05 & to appear

Neubert '05

Consistency check:

 $Red: \bar{B} \to X_c \ell \nu$ moments

ightharpoonup NLO and NNLO $ar{B}
ightharpoonup X_s \gamma$ moments 68% and 90% c.l. contours

EVENT FRACTION AT NNLO

- * Fairly large NNLO correction!
- * Reduced scale dependence.

EXCLUSIVE DECAYS

OVERVIEW

- **QCD** factorization vs. SCET
 - Comparison of SCET analysis of $B \rightarrow M_1M_2$, of Bauer et *al.* to QCD factorization results of Beneke et *al.*
- # Hadronic input from $B \rightarrow \pi l \nu$
 - Formfactor constraints + Exp. + Lattice $\rightarrow F_+(0)$, λ_B

Factorization Theorem for $B \to \pi\pi$

Beneke, Buchalla, Neubert, Sachrajda '99

BBNS, "QCD FACTORIZATION"

LCDAs and $F(q^2=0)$ from light-cone sum rules

Estimate dominant power corrections.

BPRS, "SCET APPROACH"

Bauer, Pirjol, Stewart, Rothstein '04

from fit to $B \to \pi\pi$. BPRS find two parts are comparable in size! $\alpha_s(\mu_i)$ suppression?

Leave (charming) penguins unfactorized. Neglect all power corrections.

COMPARISON

- **"SCET approach":**
 - Model independent; no dependence on light-cone sum rules.
 - might not be very precise: no power and no perturbative corrections. (BBNS find large power corrections.)
 - O More modest/less predictive. Penguins from fit, strong phases from fit, ...

$B \to \pi \ell \nu$ to the Help

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_{\pi}|^3 |V_{ub}|^2 |F_+(q^2)|^2$$

- We were measurements can be used to extract both $F_+(q^2=0)$ and, with help from lattice $H \sim \phi_B \otimes J \otimes \phi_\pi$
- ** Challenging! Have three- and five-bin measurement of partial decay rate.
 - Extrapolation to $q^2 = 0$! For H need first derivative of F_+ and F_0 at $q^2 = 0$.
 - $#F_0$ from lattice.

FORM FACTOR CONSTRAINTS

$$F_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2})} \sum_{k=0}^{\infty} a_{k} [z(q^{2})]^{k} \qquad A = \sum_{k=0}^{\infty} a_{k}^{2}$$

- **Constrained series parameterization:**
 - ** Map $q^2 \to z(q^2)$. Improved convergence of series $|z|_{\rm max} \approx 0.5$.
 - # Bound A < 1 from unitarity.
 - ** Much stronger bound $A \sim \left(\frac{\Lambda}{m_b}\right)^3$ from heavy-quark power counting. TB, Hill '05

ILLUSTRATION: BABAR 5-BIN DATA

- Current experiments measure intersect and slope, but cannot yet resolve curvature.
- * No need for model parameterizations.

RESULTS

Exp. data and $F_{+}(16 \text{GeV}^{2}) = 0.8 \pm 0.1$

$$|V_{ub}| = 3.7 \pm 0.2^{+0.6}_{-0.4} \pm 0.1 \qquad = (3.7 \pm 0.2) \times \frac{0.8}{F_{+}(16 \,\text{GeV}^{2})},$$

$$F_{+}(0) = 0.25 \pm 0.04 \pm 0.03 \pm 0.01 \qquad = (0.25 \pm 0.04) \times \frac{F_{+}(16 \,\text{GeV}^{2})}{0.8}.$$

$$(m_{B}^{2} - m_{\pi}^{2}) \frac{F'_{+}(0)}{F_{+}(0)} = 1.5 \pm 0.6 \pm 0.4,$$

$$A < 0.1 \qquad !$$

₩ With A<0.1 Factorization test:

$$\frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})/dq^2|_{q^2=0}} = 0.76^{+0.22}_{-0.18} \pm 0.05 \,\text{GeV}^2,$$

Naive fact: 0.62 ± 0.07 BBNS: $0.66^{+0.13}_{-0.08}$ BPRS: $1.27^{+0.22}_{-0.29}$

SUMMARY

- - ** NLO (even some NNLO) resummations
 - ** Factorization of power corrections
 - First 2-loop results for partial decay rates, more to come.
- Calculation of exclusive decays suffer from our lack of knowledge of input parameters.
 - Semileptonic decays can provide some of these.