
Progress in Heavy 
Flavor Theory
T h o m a s  B e c h e r



Funkadelic, “standing on the verge of getting it  on”

Flavor physics is especially appropriate 
topic at this conference:

have been on the verge of discovery of New 
Physics for a while...



New physics effects in flavor sector are 
(almost) guaranteed

Potentially large signals in FCNC 
interactions which are suppressed in SM.

Flavor physics probes very high scales

NP Models typically contain large 
numbers of flavor changing interactions 
and CP phases.

Even if there are no new flavor changing 
interactions, they are induced by 
“misalignment” of SM fields.

Minimal Flavor Violation



Tree-Level Triangle
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Fig. 1.1: Unitarity Triangle.
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• The angles β and γ = δ of the unitarity triangle are related directly to the complex phases of the
CKM-elements Vtd and Vub, respectively, through

Vtd = |Vtd|e−iβ , Vub = |Vub|e−iγ . (16)

• The unitarity relation (10) can be rewritten as

Rbe
iγ + Rte

−iβ = 1 . (17)

• The angle α can be obtained through the relation

α + β + γ = 180◦ (18)

expressing the unitarity of the CKM-matrix.

Formula (17) shows transparently that the knowledge of (Rt,β) allows to determine (Rb, γ) through [14]

Rb =
√

1 + R2
t − 2Rt cos β, cot γ =

1 − Rt cos β

Rt sin β
. (19)

Similarly, (Rt,β) can be expressed through (Rb, γ):

Rt =
√

1 + R2
b − 2Rb cos γ, cot β =

1 − Rb cos γ

Rb sin γ
. (20)

These formulae relate strategies (Rt,β) and (Rb, γ) for the determination of the unitarity triangle that
we will discuss in Chapter 6.

The triangle depicted in Fig. 1.1, together with |Vus| and |Vcb|, gives the full description of the
CKMmatrix. Looking at the expressions forRb andRt, we observe that within the SM the measurements

5

|Vub| b → u !ν

γ B
±
→ D

(∗)
K

±

Vub ∼ ρ̄ − iη̄                       from tree level processes only

         from semi-leptonic

Angle    from   



Strategy

To identify effects of new physics:

Use tree-level determination of CKM,

calculate loop processes, search for 
(pattern of) deviations

MFV, NMFV, ... ?

Limitation: experimental precision and 
ability to calculate hadronic effects

→ this talk.



Outline

B̄ → Xsγ

B̄
0
→ π

+
"
−

ν̄

(Not entirely) inclusive B-decays

 Dealing with experimental cuts

With SCET from all orders to two loops

Towards                    at NNLO

Exclusive B-decays

With SCET from one-loop to tree level

Hadronic input from                         



Inclusive Decays
B̄ → Xc!ν , B̄ → Xu!ν , B̄ → Xsγ



Methods

exp. cuts method hadr.input

B̄ → Xc!ν
loose

El>1GeV
OPE, 

HQET
µ

2
π

m2
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,
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, . . .

B̄ → Xsγ
intermediate
Eγ>E0≈2GeV

MSOPE,
SCET

µ
2
π

∆2
,

µ
2

G

m2

b

, . . .

B̄ → Xu!ν
severe, 

MX<MD

factorization,
SCET

S(ω) ,
Si(ω)

mb

, . . .

 

 

 



1/mb

B B B BC(MX , EX)

Hard part:
expand in 1/mb,

perturbative

} }
Wilson coeff.

operator matrix 
element

b b b b
c

Γ ∝ Im 〈B|J†
J |B〉

Fully inclusive B-decay can be calculated 
using the OPE in an expansion in

Nonperturbative input: matrix elements of 
local operators 



Vcb determination

ci ≡ ci(αs,
mc

mb
)

1/(mb − mc) ≈ 1/mb

|Vcb| = (42.0 ± 0.7) × 10−3

m̄c(m̄c) = (1.24 ± 0.07)GeV

m̄b(m̄b) = (4.20 ± 0.04)GeV

µ
2

π
= (0.40 ± 0.04)GeV2

Γ(B → Xc!ν) =
GF m5
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(
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Bauer et. al. ‘04; Gambino et al. ‘04, Buchmüller and Flächer ‘05 

Coefficients                           are evaluated 
in perturbation theory

Expansion in

With predictions and measurements of 
moments of decay spectra:  



Inclusive Vub

µh ∼ mb µ0 ∼ Λ

µi ∼

√

Λmb

To discriminate against the huge  b→c   
background, cuts need to be imposed 
which enforce MX < MD. 

Decay products with large energy but 
small invariant mass: OPE breaks down!

Still possible to expand in 1/EX . ⇒Soft-

Collinear Effective Theory

Three scales: hard                 , soft

Intermediate, jet-scale 



H(µh) H(µh)

Soft-Collinear Effective Theory

Γ ∼ H
2
J ⊗ S

QCD

Heavy-Quark Effective Theory

J(p2, µi)

H(µh) H(µh)

soft fields

collinear fields

Factorization theorem

B

B

BBB

B
Korchemsky, Sterman ‘94

u
bb

HQET fields ≡ soft fields

softhard jet
shape function



Scale Separation
Γ ∼ H2(µh)U(µh, µi)J(µi) ⊗ U(µi, µ0) ⊗ S(µ0)

QCD −→ SCET −→ HQET

Bauer and Manohar ‘03
Bosch et al. ‘04

Kochemsky, Marchesini ‘93
Neubert ‘04, Gardi ‘04,

TB and Neubert ‘05

Resummation of (Sudakov) logs using two-step 
matching and RG evolution in effective theory.

New: general solution of evolution equations in 
momentum instead of moment space. Lange, Neubert ‘03

Shape function develops radiative tail.

New: NLO resummation. Involves 3-loop cusp 
anomalous dimension! Moch, Vermaseren, Vogt ‘04 Two-loop 
anomalous dimensions for J and S. 



Power corrections

Γ ∼ H
2
J ⊗ S + 1

mb

∑
i
HiJi ⊗ Si + . . .

Korchemsky, Sterman ‘94
Lee & Stewart ‘04

Bosch, Neubert, Paz ‘04
Beneke et al. ‘04

B̄ → Xsγ

B̄ → Xu!ν

Factorization of power corrections using 
SCET! 

Same shape function S(ω) enters                
and                 at leading power. 

Different combination of the subleading 
shape functions in the two decays.



State of the art

B̄ → Xsγ

B̄ → XsγB̄ → Xu!ν
Neubert ‘93

Leibovich et al. ; Neubert ‘00
Lange et al. ‘05

Lange, Neubert and Paz ‘05: theoretical 
expressions which incorporate all known 
contributions to differential decay rate 

NLO result near end-point. Leading shape 
function from                   , models for 
subleading shape functions. 

reproduces 1-loop OPE result when 
integrated.

Other possibility:  shape function independent 
relations between                   and                
decay spectra.



Inclusive Vub=(4.38±0.29)×10-3
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Stat 2.2%
Syst. 2.5%
b→c 1.9%
b→u 2.2%
SF 4.7%

sub SF 3.5%
Total 7.6%

7.6 %



B̄ → Xsγ

Br(Eγ > E0 = 1.8GeV) = (3.38 ± 0.30 ± 0.29) × 10−4

FCNC process, stringent constraint on 
New Physics.

Current experimental uncertainties match 
theoretical uncertainty in the prediction of 
the (cut) rate. E.g. Belle ‘04 

Lower values of cut energy E0 . (BaBar has 
E0=1.9 GeV.)



Misiak & Steinhauser ‘04

3-loop: Gorban, Haisch, Misiak ‘04,’05

n_f-parts: Bieri et al. ‘03. Q7: Blokland et al. ‘05

NNLO calculation of the rate is underway.
Reduce perturbative uncertainty

Reduce dependence on the choice of scheme for 
mc. (NLO: 10% shift between pole and MS mass.)

Most ambitious flavor physics calculation!

2- and 3-loop matching at µ=MW.

3- and 4-loop anomalous dimensions.

2- and 3-loop matrix elements

Cut on the photon energy? For what value 
of E0 is OPE for the cut rate valid?  



Transition between shape-function and 

OPE regime: MultiSscaleOPE

∫ ∆

−Λ̄

dω S(ω) f(ω)

H × Jshape function

∆ = mb − 2E0 ≈ 1GeV

Λ̄ = mB − mb

Λ/∆ αs(∆)

Neubert ‘05

pert. param.

Br(Eγ > 1.8GeV) = (3.38+0.31+0.32
−0.42−0.30) × 10−4

Integral over S can be evaluated in OPE if 
energy window Δ is large enough.

OPE is expansion in         ,           ! 

NLO:   



〈Eγ〉 ∼ mb 〈E2

γ〉 − 〈Eγ〉
2 ∼ µ2

π

TB and Neubert ‘05 & to appear

Neubert ‘05, ‘06

Perturbative error dominant.

Parametric uncertainties can be reduced 
with precise Eγ moment measurements. 
NNLO predictions available

New: 2-loop calculations of jet-function 
and partonic shape function. Cut-effects to 
NNLO
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Figure 3: Fits to the Belle and BaBar data for the moments of the photon spectrum.
We show contours where χ2 = 1 and 2.69, so that projections onto the axes yield
parameter ranges at 68% and 90% confidence level. The fits are performed using
the shape-function scheme (left) and the kinetic scheme (right). The solid (dashed)
contour lines refer to the NNLO (NLO) approximation. The points with error bars
indicate the results obtained from the B̄ → Xc l−ν̄ moment analysis.

in the Belle analysis. In the shape-function scheme mb and µ2
π are defined at µf = 1.5GeV,

while in the kinetic scheme we adopt the conventional choice µf = 1GeV. In all cases there is
a strong anti-correlation of the two quantities, as can be seen from the figure.

The values for the heavy-quark parameters determined form the fit to the B̄ → Xsγ
moments are in excellent agreement with those derived from moments in B̄ → Xc l−ν̄ decays,
which are mSF

b = (4.61 ± 0.08)GeV and µ2,SF
π = (0.15 ± 0.07)GeV2 in the shape-function

scheme [34], and mkin
b = (4.611 ± 0.068)GeV and µ2,kin

π = (0.447 ± 0.053)GeV2 in kinetic
scheme [1]. These reference values are shown as data points in Figure 3 for comparison.
The combined average values obtained from (51) and (52) are mSF

b = (4.63 ± 0.08)GeV and
µ2,SF

π = (0.09 ± 0.14)GeV2, and mkin
b = (4.55 ± 0.09)GeV and µ2,kin

π = (0.51 ± 0.14)GeV2.
However, given that the BaBar data are still preliminary and that they employ a higher value
of E0, we consider the fit to the Belle data as our most reliable result. Combining the values
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Figure 3: Fits to the Belle and BaBar data for the moments of the photon spectrum.
We show contours where χ2 = 1 and 2.69, so that projections onto the axes yield
parameter ranges at 68% and 90% confidence level. The fits are performed using
the shape-function scheme (left) and the kinetic scheme (right). The solid (dashed)
contour lines refer to the NNLO (NLO) approximation. The points with error bars
indicate the results obtained from the B̄ → Xc l−ν̄ moment analysis.

in the Belle analysis. In the shape-function scheme mb and µ2
π are defined at µf = 1.5GeV,

while in the kinetic scheme we adopt the conventional choice µf = 1GeV. In all cases there is
a strong anti-correlation of the two quantities, as can be seen from the figure.

The values for the heavy-quark parameters determined form the fit to the B̄ → Xsγ
moments are in excellent agreement with those derived from moments in B̄ → Xc l−ν̄ decays,
which are mSF

b = (4.61 ± 0.08)GeV and µ2,SF
π = (0.15 ± 0.07)GeV2 in the shape-function

scheme [34], and mkin
b = (4.611 ± 0.068)GeV and µ2,kin

π = (0.447 ± 0.053)GeV2 in kinetic
scheme [1]. These reference values are shown as data points in Figure 3 for comparison.
The combined average values obtained from (51) and (52) are mSF

b = (4.63 ± 0.08)GeV and
µ2,SF

π = (0.09 ± 0.14)GeV2, and mkin
b = (4.55 ± 0.09)GeV and µ2,kin

π = (0.51 ± 0.14)GeV2.
However, given that the BaBar data are still preliminary and that they employ a higher value
of E0, we consider the fit to the Belle data as our most reliable result. Combining the values
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B̄ → Xc!ν

B̄ → Xsγ

68% and 90% c.l. contours

Neubert ‘05

Consistency check:

Red:                  moments 

NLO and NNLO                moments



1.5 1.6 1.7 1.8 1.9 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Event Fraction at NNLO

blin
ded

E0

F(E0)

Fairly large NNLO correction!

Reduced scale dependence.



Exclusive Decays



Overview

QCD factorization vs. SCET

Comparison of SCET analysis of 
B→M1M2, of Bauer et al. to QCD 
factorization results of Beneke et al.

Hadronic input from B→π l ν

Formfactor constraints + Exp. + Lattice 
→F+(0),  λB 



Factorization Theorem for             .              

φπ φπ

φπφB

HI HII

J

meson LCDAs
(“wave functions”)

Hard kernels
(perturbative)

Jet-function
(interm. scale)

FB→π(q2 = 0)

B → ππ

not factorized 
by BBNS

Beneke, Buchalla, Neubert, Sachrajda ‘99

Same Factorization 
theorem in SCET!

+



BBNS, “QCD Factorization”              

φπ φπ

φπφB

HI HII

J

Hard kernels
to O(αs)

Jet-function ∝ αs(µi)

FB→π(q2 = 0)

LCDAs and F(q2=0) from
 light-cone sum rules

Estimate dominant power corrections.

+



BPRS, “SCET Approach”              

φπ φπ

φπφB

HI HII

JFB→π(q2 = 0)

tree level

Leave (charming) penguins unfactorized.
Neglect all power corrections.

from fit to                . BPRS find two parts  
are comparable in size! αs(µi) suppression?                   

B → ππ

Bauer, Pirjol, Stewart, Rothstein ‘04

+



Comparison

“SCET approach”: 

Model independent; no dependence on 
light-cone sum rules.

might not be very precise: no power and 
no perturbative corrections. (BBNS find 
large power corrections.)

More modest/less predictive. Penguins 
from fit, strong phases from fit, ...



                to the help    B → π "ν

H ∼ φB ⊗ J ⊗ φπ

F+(q2 = 0)

dΓ(B → π"ν)

dq2
=

G2
F

24π3
|$pπ|

3|Vub|
2|F+(q2)|2

New measurements can be used to extract 
both                  and, with help from lattice

Challenging! Have three- and five-bin 
measurement of partial decay rate. 

Extrapolation to q2 = 0! For H need first 
derivative of F+ and F0 at q2=0.
F0  from lattice.              



Form factor constraints

F+(q2) =
1

P (q2)φ(q2)

∞∑

k=0

ak [z(q2)]k A =

∞∑

k=0

a
2

k

q
2
→ z(q2)

|z|max ≈ 0.5

A ∼

(

Λ

mb

)3

A < 1

TB, Hill ‘05

Constrained series parameterization:

Map                  . Improved convergence 
of series                   .

Bound           from unitarity.

Much stronger bound                     from 
heavy-quark power counting.  



Illustration: Babar 5-bin Data
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Current experiments measure intersect and 
slope, but cannot yet resolve curvature.

No need for model parameterizations. 



Results
F+(16GeV2) = 0.8 ± 0.1

associated with the form factor shape. Similar conclusions are implicit in other recent works.
For example, in [13] the reduction in error compared to methods employing only total exper-
imental branching fractions is due almost entirely to the inclusion of shape information from
experiment, and not to the inclusion of additional theory input points, or to the use of dis-
persive bounds. In [16], shape information from experiment is used to constrain the hadronic
input parameters appearing in sum rule estimates of the form factor. [Further comment -
are we too generous?]

In practical terms, the parameterizations (2), with N = 1, and (5), with kmax = 2, are
sufficient for describing the current generation of semileptonic data, in the sense that the
addition of more parameters does not significantly improve the fits. To provide rigorous
error estimates it is necessary to allow for arbitrarily many additional parameters within the
dispersive bounds (8) and (9). For “global” quantities like |Vub| it is possible to show by
imposing only the very loose bounds

∑
k |ρk| < 10 in (2), or

∑
k a2

k < 1 in (5) that the
extracted values are actually insensitive to the addition of more parameters. With a single
lattice input value F+(16 GeV2) = 0.8 ± 0.1, we find

|Vub| = 3.7 ± 0.2 +0.6
−0.4 ± 0.1 = (3.7 ± 0.2) × 0.8

F+(16 GeV2)
,

F+(0) = 0.25 ± 0.04 ± 0.03 ± 0.01 = (0.25 ± 0.04) × F+(16 GeV2)

0.8
.

(12)

The first error is experimental, the second is theoretical from the lattice input, and the third
is due to the uncertainty in the form factor shape. For definiteness, the central values in
(12) are obtained using the parameterization (5) with

∑
k a2

k < 0.01, and the third error is
very conservatively estimated by adding the maximum variation of the boundaries of the 1σ
interval induced by relaxing the bound to

∑
k a2

k < 1.
For less global quantities, like the slope of the form factor at q2 = 0, the very loose bound

(9) is not sufficient to tightly constrain the impact of arbitrarily many additional parameters.
In this case we adopt more realistic estimates for the bound, and find

103|VubF+(0)| = 0.92 ± 0.11 ± 0.03 ,

(m2
B − m2

π)
F ′

+(0)

F+(0)
= 1.5 ± 0.6 ± 0.4 , (13)

(1 − α)−1 = 8 +2
−7 ± 7 .

The first error is experimental, and the second is due to uncertainty in the form factor shape
(these quantities are independent of the form factor normalization). The latter error is esti-
mated by adding the maximum variation of the boundaries of the 1σ interval when the bound
is relaxed to

∑
k a2

k < 0.1.
While the dispersive bound approach provides an elegant means of demonstrating for-

mal convergence properties with the minimal assumption of form-factor analyticity and the
convergence of an operator product expansion, some caution is required in order to avoid
misinterpreting the results. Firstly, for certain observables, e.g. |Vub|, the fits are much more

11

Exp. data and 

A<1

A<0.1

tightly constrained by the data than by the dispersive bounds. This leads to the happy con-
clusion that the errors on |Vub| do not depend on the chosen parameterization or the exact
value of the bound, and the analysis lends itself to a straightforward statistical interpretation.
Secondly, other important observables, such as the slope of the form factor, are sensitive to
the addition of more parameters than can be constrained by the data, but are allowed by the
dispersive bound. Since this bound is overestimated, presumably by orders of magnitude, a
reliance on this procedure would lead to the pessimistic conclusion that almost no information
at all can be extracted from the data for these quantities. In such cases, we propose to use
tighter bounds, which follow from the scaling behavior of the bounded quantity in the heavy
quark limit.

Apart from establishing order-of-magnitude estimates for the bounds in (8) and (9) by
heavy-quark power counting, none of the above analysis relies on heavy-quark, large-recoil
or chiral expansions, or on the associated heavy-quark, soft-collinear or chiral effective field
theories. However, the semileptonic data can be used to test predictions from these effective
field theories, and to determine low-energy parameters that can be used as inputs to the
calculation of other processes. For example, using the experimental result Br(B− → π−π0) =
(5.5 ± 0.6) × 10−6 [17] together with |Vub|F+(0) from (13), we find

Γ(B− → π−π0)

dΓ(B̄0 → π+"−ν̄)/dq2|q2=0
= 0.76 +0.22

−0.18 ± 0.05 GeV2 , (14)

where the first error is experimental, and the second is due to the form-factor shape uncertainty
in (13). Such ratios provide a strong test of factorization [18]. The leading-order prediction
for this ratio, corresponding to the “naive” factorization picture where hard-scattering terms
are neglected, yields 16π2f 2

π |Vud|2(C1 + C2)2/3 = 0.62± 0.07 GeV2. This uncertainty includes
only the effects of varying the renormalization scale of the leading-order weak-interaction
coefficients [19] between mb/2 and 2mb. This may be compared to the prediction of Beneke
and Neubert [20] who use QCD factorization theorems for two-body decays to work beyond
leading order and include the effects of hard-scattering terms, obtaining for the same ratio,
0.66 +0.13

−0.08 GeV2. The uncertainty in their prediction is dominated by the uncertainty in the
light-cone distribution amplitudes (LCDAs) of the B- and π-mesons. Bauer et al. [21, 13]
evaluate the same factorization theorems using a different strategy: they use experimental
results for other B → ππ decays to determine the part involving the LCDAs from data, which
is possible if all power corrections, and perturbative corrections of order αs(mb), are neglected.
For the ratio (14) they find 1.27+0.22

−0.29 GeV2, where we display only experimental errors. The
semileptonic data provides important information on otherwise poorly constrained hadronic
parameters entering these processes.

As a second application, the parameter δ measuring the relative size of hard-scattering and
soft-overlap contributions in the B → π form factor can be related to the slope of the form
factor at q2 = 0 [12]. Extrapolated to zero recoil, the lattice calculations in [5, 6] give for the
slope of the F0 form factor, β ≡ [(m2

B − mπ)2F ′
0(0)/F+(0)]−1 = 1.2 ± 0.1. Together with (13)

this yields

δ ≡ 1 − m2
B − m2

π

F+(0)

(
dF+

dq2

∣∣∣∣
q2=0

− dF0

dq2

∣∣∣∣
q2=0

)

= 0.4 ± 0.6 ± 0.1 ± 0.4 , (15)
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Factorization test: 

BBNS: 0.66
+0.13
−0.08 BPRS: 1.27

+0.22
−0.29Naive fact: 0.62 ± 0.07

associated with the form factor shape. Similar conclusions are implicit in other recent works.
For example, in [13] the reduction in error compared to methods employing only total exper-
imental branching fractions is due almost entirely to the inclusion of shape information from
experiment, and not to the inclusion of additional theory input points, or to the use of dis-
persive bounds. In [16], shape information from experiment is used to constrain the hadronic
input parameters appearing in sum rule estimates of the form factor. [Further comment -
are we too generous?]

In practical terms, the parameterizations (2), with N = 1, and (5), with kmax = 2, are
sufficient for describing the current generation of semileptonic data, in the sense that the
addition of more parameters does not significantly improve the fits. To provide rigorous
error estimates it is necessary to allow for arbitrarily many additional parameters within the
dispersive bounds (8) and (9). For “global” quantities like |Vub| it is possible to show by
imposing only the very loose bounds

∑
k |ρk| < 10 in (2), or

∑
k a2

k < 1 in (5) that the
extracted values are actually insensitive to the addition of more parameters. With a single
lattice input value F+(16 GeV2) = 0.8 ± 0.1, we find

|Vub| = 3.7 ± 0.2 +0.6
−0.4 ± 0.1 = (3.7 ± 0.2) × 0.8

F+(16 GeV2)
,

F+(0) = 0.25 ± 0.04 ± 0.03 ± 0.01 = (0.25 ± 0.04) × F+(16 GeV2)

0.8
.

(12)

The first error is experimental, the second is theoretical from the lattice input, and the third
is due to the uncertainty in the form factor shape. For definiteness, the central values in
(12) are obtained using the parameterization (5) with

∑
k a2

k < 0.01, and the third error is
very conservatively estimated by adding the maximum variation of the boundaries of the 1σ
interval induced by relaxing the bound to

∑
k a2

k < 1.
For less global quantities, like the slope of the form factor at q2 = 0, the very loose bound

(9) is not sufficient to tightly constrain the impact of arbitrarily many additional parameters.
In this case we adopt more realistic estimates for the bound, and find

103|VubF+(0)| = 0.92 ± 0.11 ± 0.03 ,

(m2
B − m2

π)
F ′

+(0)

F+(0)
= 1.5 ± 0.6 ± 0.4 , (13)

(1 − α)−1 = 8 +2
−7 ± 7 .

The first error is experimental, and the second is due to uncertainty in the form factor shape
(these quantities are independent of the form factor normalization). The latter error is esti-
mated by adding the maximum variation of the boundaries of the 1σ interval when the bound
is relaxed to

∑
k a2

k < 0.1.
While the dispersive bound approach provides an elegant means of demonstrating for-

mal convergence properties with the minimal assumption of form-factor analyticity and the
convergence of an operator product expansion, some caution is required in order to avoid
misinterpreting the results. Firstly, for certain observables, e.g. |Vub|, the fits are much more
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Summary
Impressive progress in calculation of 
inclusive B-decays

NLO (even some NNLO) resummations

Factorization of power corrections

First 2-loop results for partial decay 
rates, more to come.

Calculation of exclusive decays suffer from 
our lack of knowledge of input parameters. 

Semileptonic decays can provide some of 
these.


