Searches for Higgs and New Physics at the Tevatron Qizhong Li Fermilab for the CDF and D0 collaborations February 13, 2006 2006 Aspen Winter Conference "Particle Physics at the Verge of Discovery" ### **Outline** - Tevatron Performance - SM Higgs search - MSSM Higgs Search - New Physics - Summary ### **Tevatron Run II** # The World's Highest Energy Accelerator ``` Run I 1992 - 1996 E_{CM} = 1.8 \text{ TeV} \sim 120 \text{ pb}^{-1} ``` ``` Run IIa 2001 - 2006 E_{CM} = 1.96 \text{ TeV} \sim 1.4 \text{ fb}^{-1} Run IIb 2006 - 2009 E_{CM} = 1.96 \text{ TeV} \sim 7 \text{ fb}^{-1} ``` Feb. 14, 2006 Q.Li ### **Tevatron Performance** - Record high: - Peak luminosity: 172×10^{30} cm⁻² s⁻¹ - Weekly intergrated luminosity: 27 pb⁻¹/week - Total delivered intergrated luminosity: 1.4 fb⁻¹ ### Experimental Limits on Higgs Mass Direct searches by LEP on SM Higgs Boson: $$m_H > 114.4 \text{ GeV } (95\% \text{ CL})$$ Indirect limit from fits to precision EW measurements from LEP-SLC-Tevatron $$m_H < 219 \text{ GeV } (95\% \text{ CL})$$ using "latest" m_t =172.7 ± 2.9 GeV (CDF+D0, Run I+II) preferred value: $$m_H = 91^{+45}_{-32}$$ GeV Feb. 14, 2006 Q.Li 2006 Aspen Conference ### SM Higgs Production and Decay #### **Production** ### Decay Search strategy: M_H <135 GeV associated production WH and ZH with H→bb decay Backgrounds: Wbb, Zbb, top... $M_H > 135 \text{ GeV gg } \rightarrow H \text{ (or WH) production with } H \rightarrow WW^* \text{ decay}$ Backgrounds: WW/WZ production... ### Higgs sensitivity The integrated luminosity required per experiment, to either exclude a SM Higgs at 95% C.L. or discover it at the 3σ or 5σ level; no systematics Tevatron enters sensitive region with 2 fb⁻¹ by the end of 2006. - No single channel guarantees success. - Combine two experiment's results. - Improved understanding of detectors is necessary. - Need advanced analysis techniques to maximize sensitivity. ### WH $\rightarrow \ell_{vbb}$ - Best channel for low mass higgs. - Event signature: - A high p_T lepton (e or μ) - Large missing E_T - Two b-jets (≥ 1 b-tag) Backgrounds: Wbb, Wcc, W+jets (mistags) - Backgrounds: - Diboson - Top - **QCD** Events / 20 GeV/c² 40 20 10 Feb. 14, 2006 Q.Li CDF Run II Preliminary (319 pb Top W[±]+2jets (≥ 1 b-tag) Data W[±]+light flavors W[±]+heavy flavors Background Error $W^{\pm}H \times 10 \ (m_{H} = 115 \ GeV/c^{2})$ Mean = $102.5 \pm 0.2 \text{ GeV/c}^2$ Width = $18.0 \pm 0.2 \text{ GeV/c}^2$ χ^2 /ndf = 18.58 / 14 KS Test = 0.59 Dijet Mass (GeV/c²) $W^{\pm}Z^{0},W^{+}W^{-},Z^{0}Z^{0}$ and $Z^{0}\rightarrow \tau^{+}\tau^{-}$ ### $WH \rightarrow \ell \nu bb$ After 2 b-tags, observe 13 events, expect: Wbb: 4.29 ± 1.03 Other bkg: 5.73 ± 1.45 WH: 0.14+0.03 CDF: WH $\rightarrow \ell \nu bb$ (319 pb⁻¹) (evbb, $\mu \nu bb$ combined) ### $ZH \rightarrow vvbb$ - Missing $E_T > 25 \text{ GeV}$, - 2 acoplanar b-jets, $E_T > 20 \text{ GeV}$ - Background: W+jets, Z+jets, top, WZ, ZZ - No isolated track, $H_T < 200 \text{ GeV}$ - Instrumental bkg: multijets w/mistag - Jet acopalarnarity, various asymmetries Feb. 14, 2006 Q.Li ### $ZH \rightarrow vvbb$ | Dijet mass cut | ZH
120 | mistag | QCD | Top | EWK | Total
bkg | observed | |-------------------------------|-----------|--------|------|------|-----|--------------|----------| | Before | 0.16 | 7.04 | 2.58 | 2.09 | 7.0 | 19.7 | 19 | | Mass cut for
120 GeV higgs | 0.13 | 2.2 | 0.9 | 0.8 | 0.5 | 4.36 | 6 | $E_T > 25 GeV$. veto 3nd jet $\mathcal{L}_{T} > 70 \text{GeV}$ $. \ge 1 \text{ b-tag}$ Higgs Mass (GeV/c²) 2006 Aspen Conference Jets: 84.7GeV, 71.9GeV (b-tagged) missing E_T: 98 _{GeV}, dijet mass: 128.6 GeV Feb. 14, 2006 Q.Li 11 ### $H \rightarrow W^+W^- \rightarrow \ell^+\ell^-\nu\nu$ #### Heavy Higgs: Br(H \rightarrow WW*)>0.9, when m_H>160 GeV Search strategy: - Two high $\mathbf{p_T}$ leptons with large missing $\mathbf{E_T}$ - Opening angle between leptons ($\Delta\Phi_{ll}$) is useful discriminant Two leptons from Higgs tend to move in parallel (small $\Delta\Phi_{ll}$), due to spin correlations in $H \to WW$ decay products. Leptonic decay channels are promising: evev, μνμν or evμν Backgrounds include WW, tt, W/Z+jets, Z/γ*, QCD. WW is dominant background. m - 160 GeV CDF: $\sim 360 \text{ pb}^{-1}$ $m_H = 160 \text{GeV}$ | | m _H 10000 (| |-----------------|------------------------| | Expected signal | 0.58 <u>+</u> 0.04 | | diboson | 10.2 <u>+</u> 1.0 | | Other bkg | 3.6 <u>+</u> 0.7 | | Total bkg | 13.8 <u>+</u> 1.2 | | data | 16 | D0: $\sim 320 \text{ pb}^{-1}$ | | 111 _H -1000c v | |-----------------|---------------------------| | Expected signal | 0.68 <u>+</u> 0.01 | | diboson | 12.3 <u>+</u> 0.3 | | Other bkg | 7.5 <u>±</u> 1.1 | | Total bkg | 19.8 <u>+</u> 1.2 | | data | 19 | Feb. 14, 2006 Q.Li 2006 Aspen Conference ### WH \rightarrow WWW* $\rightarrow \ell^{\pm}\nu\ell^{\pm}$ - Associated Higgs production, WH, where Higgs decays to WW - Very clean signature: 2 like sign e or μ + 2 jets + Missing E_T #### $D0 (ee/e\mu/\mu\mu 384-363 \text{ pb}^{-1})$: - 2 like-sign isolated e or μ, pT>15 GeV, veto 3rd lepton - Track quality cuts (reduce charge flip) - Missing $E_T > 20 \text{ GeV}$ #### Background: physics: WZ $\rightarrow \ell \nu \ell \ell$ #### instrumental: - charge flips ($\mathbb{Z}/\gamma^* \rightarrow \ell\ell$) - QCD or W+jets | Feb. | 14. | 2006 | Q.Li | |------|-----|------|------| CDF: 193.5pb⁻¹ ### SM Higgs: where we stand today #### Tevatron Run II Preliminary Feb. 14, 2006 Q.Li 2006 Aspen Conference ### Supersymmetry - Main motivation protect Higgs boson mass from large radiative corrections (Hierarchy problem). - Phenomenology every SM particle gets a SUSY partner with $\Delta S=1/2$. - SUSY partners have same quantum numbers, but opposite Rparity. - $R=(-1)^{3B+L+2S} = +1$ (SM) or -1 (SUSY). - If R-parity is conserved (RPC) - SUSY particles are produced in pairs. - Lightest SUSY particle (LSP) is stable. - Missing E_T from LSP is a typical SUSY signature. - Higgs sector required to have two Higgs doublets. - Large number of SUSY searches in CDF and D0. too many to describe here, can only present some of them today. ### MSSM Search: (b)bh →bbb(b) - Search for neutral Higgs in a two-Higgs-doublet MSSM SUSY model. - Cross-section rises as tan²β - 260 pb⁻¹ sample of triple b-tagged multi-jet events. - No distinction between h or H and A #### **Sample Selection:** - Trigger >3 jets with $E_T > 15$ GeV, - Offline cut on E_T of leading jets optimised for each Higgs mass. - 3 b-tagged jets or more #### **Backgrounds:** bbjj, ccjj, cccc, bbcc, bbbb Z(bb,cc), tt "QCD fakes" : jjjj ### $b(b)h \rightarrow bbb(b)$ Expected and measured 95% C.L. upper limits on the signal cross section • The 95% C.L. upper limits on $\tan \beta$ as a function of m_A and for two scenarios of MSSM No mixing in stop sector: X_t = 0 $X_t = A_t - \mu \cot \beta$, $A_t - \text{tri-linear coupling}$, $\mu = -0.2 \text{ TeV}$ - Maximal mixing: $X_t = \sqrt{6} \times M_{SUSY}$, $M_{SUSY} = 1 \text{ TeV}$ - With 5 fb⁻¹ of data, assuming the current performance, can probe tanβ values down to 20-30 depending on the mass, model ### $h \rightarrow \tau^+\tau^-$ - In MSSM at high tanβ, higgs production can be much larger than SM. - Event signature: - a lepton, e or μ , (from τ decay) - a τ–jet (pencil-like) - missing E_T - Backgrounds: - $-Z \rightarrow \tau^+\tau^-$ - W+jets, QCD (fakes) - Top, diboson, Z→ee/μμ - tau efficiency: ~ 46% - Fake rate: ~ 1.5% for 20 GeV jet; ~ 0.1% for 100 GeV jet m_{vis} : invariant mass of (ℓ, τ_{had}, E_T) ### $h \rightarrow \tau^+\tau^-$ • Data: 310 pb⁻¹ • Expected total background: 496±5±28±25 • Observe: 487 events • Binned likelihood fit of $m_{vis}(\ell, \tau_{had}, E_T)$ for set limit. 20 ### MSSM Higgs Prospects Projections are made for the combined reach of CDF and D0. MSSM Higgs bosons $b\overline{b}\phi(\rightarrow b\overline{b}), \ \phi = h, H, A$ 100 70 No mixing 3σ 80 60 Max. mixing 1 fb-1/exp. tan^β 90′ fb^{-1} 50 ·2 fb⁻¹ ·4 fb⁻¹ tanß 8 fb-1/exp. ·8 fb⁻¹ $h/A/H \rightarrow \tau \tau$ 20 CDF 30 discovery thresholds m_A^{120} (GeV) 100 140 200 80 160 240 120 Each, m_A (GeV/c²) Combined ### MSSM Charged Higgs: t → H+b - BR($t\rightarrow H^+b$) can be large, competing with the $t\rightarrow W^+b$. - Search based on the tt cross section (top disappearance in lepton channels). ### Chargino/Neutralinos Higgsinos and gauginos mix→charginos/neutralinos LEP: $m_{\tilde{X}^{\pm}} > 103.5 \, GeV/c^2$ $$\chi_2^0 \chi_1^{\pm} \rightarrow \ell^{\pm} \ell^{\mp} \ell^{\pm} \chi_1^0 \chi_1^0 X$$ $$\ell = e, \mu, \tau$$ - Small x-section, but - Trileptons with missing E_T are very clean, low background. - Major backgrounds: - Dibosons. - QCD (fakes). - Top Feb. 14, 2006 Q.Li 2006 Aspen Conference ### Chargino/Neutralinos #### D0: 6 analyses (325 pb⁻¹) | Channel | SM bkg | Data | |--------------|-----------|------| | ee + track | 0.21±0.12 | 0 | | eμ + track | 0.31±0.13 | 0 | | μμ + track | 1.75±0.57 | 2 | | eτ + track | 0.58±0.14 | 0 | | μτ + track | 0.36±0.13 | 1 | | μμ like sign | 0.66±0.37 | 1 | CDF: e,µ final states 346 pb⁻¹ | Channel | SM bkg | Data | |--------------|---------------|------| | eeℓ | 0.17±0.05 | 0 | | $\mu\mu\ell$ | 0.09 ± 0.03 | 0 | ### Squark/Gluino - Squarks and gluinos are pair-produced by strong interaction and decay into quarks and LSP. - Signature: jets + missing E_T (2, 3, or 4 jets). $\tilde{q} \rightarrow q\tilde{\chi}^0$ $\tilde{g} \rightarrow qq\tilde{\chi}^0$ - Backgrounds: W, Z, top, QCD. | Channel | SM bkg | Data | |------------------------------------|----------|------| | D0 2 jets (310 pb ⁻¹) | 12.8±5.4 | 12 | | D0 3 jets (310 pb ⁻¹) | 6.1±3.1 | 5 | | D0 4 jets (310 pb ⁻¹) | 7.1±0.9 | 10 | | CDF 3 jets (254 pb ⁻¹) | 4.1±1.5 | 3 | 25 ### Scalar bottom - Sbottom pair production: $q\bar{q} \rightarrow b\bar{b} \rightarrow b\bar{b}\chi_1^0\chi_1^0$. - Event signature: 2 acoplanar b jets + missing E_T. - Backgrounds: W, Z, diboson, top, QCD. | 318 pb ⁻¹ | SM background | Data | |----------------------|---------------|------| | Before b-tag | 1335±48 | 1433 | | After b-tag | 38.6±2.8 | 36 | Feb. 14, 2006 Q.Li 2006 Aspen Conference ### GMSB SUSY YY+ET In Gauge-Mediated SUSY the lightest neutralino decays to gravitino via $\tilde{\chi_1^0} \rightarrow \gamma \tilde{G}$ • Event signature: 2 photons + missing E_T. | | SM bkg | Data | $m_{\chi^+}(GeV)$ | |-----------------------------|---------|------|-------------------| | D0 (263 pb ⁻¹) | 3.7±0.6 | 2 | 195 | | CDF (202 pb ⁻¹) | 0.3±0.1 | 0 | 167 | | Comb. | | | 209 | CDF & D0 Combined result (first of many to come) PRL 94, 041801 (2005) PRD 71, 031104(R) (2005); Feb. 14, 2006 Q.Li 2006 Aspen Conference 27 ### 2nd Generation Leptoquarks - Pair production: $qq \rightarrow LQLQ \rightarrow \mu\mu qq$, $\beta = Br(LQ \rightarrow \mu q)$ - Search channels: $2\mu+2j$ (CDF and D0); $\mu+2j+\cancel{E}_T$ (CDF); \cancel{E}_T+2j (CDF). - Backgrounds: Z/γ*, QCD (fake) - No evidence found. Submitted to PRL ### R-parity Violation - R-parity violating (RPV) interactions violate B or L, but are not ruled out. - LSP decays to SM particles $(\chi_1^0 \rightarrow \ell^+ \ell^- \nu)$. - SUSY particles can be produced singly. $$d\overline{d} \rightarrow \tilde{\nu}_{\tau} \rightarrow e\mu$$ | SM bkg | Data | |-----------|------| | 7.66±0.63 | 5 | Signal region: $$100 < M_{e\mu} < 180 Gev$$ #### Backgrounds: - . Diboson - . Top - $Z \rightarrow \tau \tau$ ### Signature-based searches for dileptons + X • Look for excess above SM prediction in dilepton + X (X = photon, lepton, b-jet, H_T , Missing E_T ; dileptons can be same-sign or opposite-sign) events per 6 Gev - Set cuts on first 1/3rd of dataset (now, 305pb⁻¹), apply to next part of data (coming soon) - can be further applied to many models; e.g. heavy quarks as first example #### High p_T Z's (inclusive) in dimuons No excess seen in these channels! #### Dilepton (ee, $\mu\mu$, $e\mu$) + high H_T $H_T ==$ scalar sum of electron and jet E_T , muon p_T , missing E_T ### Summary - CDF and D0 have searched for Higgs and new physics in many different channels. - No Higgs has been found yet. - No evidence for new physics. - Tevatron is performing well. Delivered ~1.4 fb⁻¹ luminosity for each experiment so far. - New analyses with 1 fb⁻¹ coming soon. - Expect ∼8 fb⁻¹ total in Run II. - Will be able to reach 3σ evidence or 180 GeV in mass. if nature is kind - Many additional searches not covered in this talk - LED, new gauge bosons, stop, technicolor,... - Experiments will be upgraded 2006. - Prospects are excellent for exciting new physics results! ## Backup slides ### $\underline{B}_s \rightarrow \mu\mu$ - In SM, small BR $\sim 3.5 \times 10^{-9}$ - But in SUSY, enhancement $\sim \tan^6 \beta$ factor