

Kevin McFarland

University of Rochester

WIN03, Lake Geneva, WI 8 October 2003

Introduction to NuTeV $sin^2\theta_W$

To Follow:

(1) three talks on QCD-related uncertainties

(2) I return with a summary of these and other issues

NuTeV Collaboration

G. P. Zeller⁵, T. Adams⁴, A. Alton⁴, S. Avvakumov⁸, L. de Barbaro⁵, P. de Barbaro⁸, R. H. Bernstein³, A. Bodek⁸, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁸, L. Bugel³, J. Conrad², R. B. Drucker⁶, B. T. Fleming², R. Frey⁶, J.A. Formaggio², J. Goldman⁴, M. Goncharov⁴, D. A. Harris⁸, R. A. Johnson¹, J. H. Kim², S. Koutsoliotas², M. J. Lamm³, W. Marsh³, D. Mason⁶, J. McDonald⁷, K. S. McFarland^{8,3}, C. McNulty², D. Naples⁷, P. Nienaber³, A. Romosan², W. K. Sakumoto⁸, H. Schellman⁵, M. H. Shaevitz², P. Spentzouris², E. G. Stern², N. Suwonjandee¹, M. Tzanov⁷, M. Vakili¹, A. Vaitaitis², U. K. Yang⁸, J. Yu³, and E. D. Zimmerman²

Cincinnati¹, Columbia², Fermilab³, Kansas State⁴, Northwestern⁵, Oregon⁶, Pittsburgh⁷, Rochester⁸

For an isoscalar target composed of u,d quarks:

Llewellyn Smith Relation:

$$R^{\nu(\bar{\nu})} = \frac{\sigma_{NC}^{\nu(\nu)}}{\sigma_{CC}^{\nu(\bar{\nu})}} = \rho^2 \left(\frac{1}{2} - \sin^2\theta_W + \frac{5}{9}\sin^4\theta_W (1 + \frac{\sigma_{CC}^{\bar{\nu}(\nu)}}{\sigma_{CC}^{\nu(\bar{\nu})}})\right) = g_L^2 + \frac{\sigma_{CC}^{\bar{\nu}(\nu)}}{\sigma_{CC}^{\nu(\bar{\nu})}} g_R^2$$

- NC/CC ratio easiest to measure experimentally but ...
 - Many SF dependencies and systematic uncertainties cancel, BUT
 - Must correct for up-down quark difference in target, EW radiative corrections, heavy quark effects, non-QPM parts of the cross-section, etc.
 - Here is where QCD and QED enter (constrained by data where available)

CC is suppressed due to final state c-quark

- \Rightarrow Need to know s-quark sea and m_c
- Modeled with leading-order slow-rescaling

$$x = \frac{Q^2}{2M_V} \rightarrow \xi = \frac{(Q^2 + m_c^2)}{2M_V}$$

- Measured by NuTeV/CCFR using dimuon events ($vN \rightarrow \mu cX \rightarrow \mu\mu X$)

(NuTeV+CCFR: M. Goncharov et al., Phys. Rev. D64: 112006,2001 and D. Mason presentation at ICHEP '02. CCFR: A.O. Bazarko et al., Z.Phys.C65:189-198,1995.)

8 October 2003

K. McFarland, Rochester

Before NuTeV m_c was Limit

vN experiments had hit a brick wall in precision Due to systematic uncertainties (i.e. m_c....)

$$\sin^2 \theta_W^{on-shell} = 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$$
$$\implies M_W = 80.14 \pm 0.19 \ GeV$$

(All experiments corrected to NuTeV/CCFR m_c and to large $M_{top} > M_W$) 8 October 2003 K. McFarland, Rochester

NuTeV's Technique

Cross section differences remove sea quark contributions \Rightarrow Reduce uncertainties from charm production and sea

Paschos - Wolfenstein Relation

$$R^{-} = \frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\nu}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\nu}} = \rho^{2} \left(\frac{1}{2} - \sin^{2} \theta_{W}\right) = g_{L}^{2} - g_{K}^{2}$$

$$g_{L,R}^2 = u_{L,R}^2 + d_{L,R}^2$$

$$\sigma(v_{\mu} d_{sea}) - \sigma(\bar{v}_{\mu} \bar{d}_{sea}) = 0 \implies \text{Only } d_{valence} \text{ contribute}$$

$$\sigma(v_{\mu} \bar{u}_{sea}) - \sigma(\bar{v}_{\mu} u_{sea}) = 0 \implies \text{Only } u_{valence} \text{ contribute}$$

$$\sigma(v_{\mu} s_{sea}) - \sigma(\bar{v}_{\mu} \bar{s}_{sea}) = 0 \implies \text{No } strange - sea \text{ contributio}$$

n (Assuming $xs(x) = \overline{xs(x)}$)

R⁻ manifestly insensitive to sea quarks

- Charm and strange sea error negligible
- Charm production uncertainty small
 - \blacksquare *d_V* quarks only: Cabbibo suppressed and at high-x
- **But** R^- requires separate v and \overline{v} beams
 - \Rightarrow NuTeV SSQT (Sign-selected Quad Train) beamline

- Realized v in v mode 3×10^{-4} , v in \bar{v} mode 4×10^{-3} , 1.6% v_e \bar{v}_{e} 7 8 October 2003

NuTeV Sign-Selected Beamline

Paschos - Wolfenstein Relation

$$R^{-} = \frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\overline{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\overline{\nu}}} = \rho^{2} \left(\frac{1}{2} - \sin^{2} \theta_{W}\right)$$

Beam identifies neutral currents as v or v (v in v mode 3×10⁻⁴, v in v mode 4×10⁻³)

- Beam only has ~1.6% electron neutrinos
 - ⇒ Important background for isolating true NC event

Neutral Current / Charged Current Event Separation

- Separate NC and CC events statistically based on the "event length" defined in terms of # counters traversed
 - n.b., electron neutrinos will be NC candidates

NuTeV Data Sample

Paschos-Wolfenstein à la NuTeV

Measurement Uncertainties

sin² θ_W error
statistically
dominated
(R⁻ technique)

R^v uncertainty dominated by theory model

SOURCE OF UNCERTAINTY	$\delta \sin^2 \theta_W$	$\delta R^{\nu}_{\rm exp}$	$\delta R_{\rm exp}^{\overline{\nu}}$
Data Statistics	0.00135	0.00069	0.00159
Monte Carlo Statistics	0.00010	0.00006	0.00010
TOTAL STATISTICS	0.00135	0.00069	0.00159
$ u_e, \overline{ u}_e$ Flux	0.00039	0.00025	0.00044
Interaction Vertex	0.00030	0.00022	0.00017
Shower Length Model	0.00027	0.00021	0.00020
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006
Energy Measurement	0.00018	0.00015	0.00024
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057
Charm Production, $s(x)$	0.00047	0.00089	0.00184
R_L	0.00032	0.00045	0.00101
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	0.00007	0.00026
Higher Twist	0.00014	0.00012	0.00013
Radiative Corrections	0.00011	0.00005	0.00006
Charm Sea	0.00010	0.00005	0.00004
Non-Isoscalar Target	0.00005	0.00004	0.00004
TOTAL MODEL	0.00064	0.00101	0.00212
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272

Compared to Other Measurements

8 October 2003

K. McFarland, Rochester

SM Fit with NuTeV $sin^2\theta_W$

- Without NuTeV:
 - $-\chi^2/dof = 19.6/14$, probability of 14%
- With NuTeV:
 - $-\chi^2/dof = 28.8/15$, probability of 1.7%
- Upper m_{Higgs} limit weakens slightly

	Measurement	Pull	$(O^{meas} - O^{fit}) / \sigma^{meas}$
(5)			-3-2-10123
$\Delta \alpha_{had}^{(3)}(m_Z)$	0.02761 ± 0.00036	-0.24	
m _z [GeV]	91.1875 ± 0.0021	0.00	
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-
$\sigma^{\scriptscriptstyle 0}_{\scriptscriptstyle had}$ [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	_
A ^{0,I} fb	0.01714 ± 0.00095	0.68	-
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	
R _c	0.1718 ± 0.0031	-0.15	•
A ^{0,b}	0.0995 ± 0.0017	-2.62	
A ^{0,c}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	0.670 ± 0.026	0.06	
A _I (SLD)	0.1513 ± 0.0021	1.46	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	
m _w [GeV]	80.449 ± 0.034	1.62	
Γ _w [GeV]	2.136 ± 0.069	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	NuTeV
sin²θ _w (νN)	0,2277 ± 0.0016	3.00	
$Q_W(Cs)$	-72.18 ± 0.46	1.52	
			-3-2-10123

Interpreting NuTeV sin² θ_{W}

Report from the NuTeV collaboration

Kevin McFarland University of Rochester

WIN03, Lake Geneva, WI 8 October 2003

New Physics?

A brief comment on the possibilities.

New Physics Summary

- The cause of NuTeV's anomaly is highly unclear
 - Beyond SM effects explaining NuTeV are strained
 - It's not SUSY loops or RPV SUSY

Hard to fit with leptoquarks

"Designer" Z' is possible

S. Davidson et al. hep-ph/0112302

Heavy-light v mixing + more miracles *Li & Ma, Takeuchi et al*

- So the community focuses on mundane explanations I would argue that none of these are outstanding candidates

either

- c.f. $(g-2)_{\mu}$. "Everyone knows" it is SUSY but result is theoretically shaky due to e^+e^- and τ differences in HVP.
 - g-2 has the opposite problem: too many explanations!

Corroborating Evidence and Impact of Future Results

Is there other evidence of BSM physics or Mundane Physics?

What can we learn in the future?

Is NuTeV Result Confirmed? Are there corroborating data?

- In short, nothing definite.
- It is consistent with previous vN measurements, but even combined, these are low precision.
- Other tests of neutrino neutral current also consistent, but not high precision...

- An interesting hint?
- Model building around this is a challenge.
- S. Davidson et al. hep-ph/0112302 W. Loinaz et al, hep-ph/0210193 X. Li and E. Ma, hep-ph/0212029

Future Data and Interpretation

- Strange Sea Asymmetry, u_p≠d_p, nuclear effects
 - For the most part, I would argue the data in hand already constrains these possibilities well enough
 - Any continuing debate is over interpretation
 - Caveat: no independent check of Z⁰ exchange nuclear effects (by definition). Rely on v CC and l[±] NC.
- Isospin violation in PDFs, e.g., u_n≠d_p
 - Almost completely unconstrained, even at levels that would appear a priori ludicrous. Martin et al, hep-ph/0308087
 - FNAL-P906 $\pi^{\pm}p$, $\pi^{\pm}d$ Drell-Yan can directly probe this
 - Re-analysis of old v bubble-chamber data? vp vs. vn

Future Data (cont'd)

Other precision EW data with quarks or neutrinos

– e-Baryon scattering is undergoing a re-emergence!

QWEAK at JLab (ep)

- DISParity at SLAC (eD) to redo Prescott experiment
- These experiments suffer from many of QCD uncertainties that are worries in interpreting NuTeV. Worse because lower Q²?
- Future neutrino experiments will be very very tough
 - Is there any point to re-measuring this in v DIS?
 - More statistics would help, but NuTeV systematic floor is 0.0008 (c.f., total NuTeV error of 0.0016)
 - Same systematic concerns
 - Maybe worth doing if there were a 1 TeV ν beam at LHC.
 - v-e scattering would be a great measurement, but it's tough
 - Cross-section is down by factor of a few 103
 - Normalization?

Future Data (cont'd)

- Always the possibility of a future discovery impacting the NuTeV interpretation
 - LHC or TeVatron finds a Z'
 - Giga-Z confirms and strengthens small deficit in invisible width

— ...

Electron Neutrino Background Under Control?

- 1. How it is measured
- 2. The recent BNL-E865 Measurement

Electron Neutrino Background

- Approximately 5% of NC candidates are v_e CC events (It would take a 20% overestimate of v_e to move NuTeV to SM)
 - Main ν_{e} source is K $^{\pm}\,$ decay (93% / 70% of total in ν / $\bar{\nu}$ beams)
 - Others include K_L 's (4%/18%) and Charm (2%/9%)
 - Main uncertainty is K[±]_{e3} branching ratio (known to 1.4%) !
 - Unless BNL-E865 is correct. They claim K^{\pm}_{e3} BR is 6% higher than PDG, fixing V_{us} problem but exacerbating NuTeV by +0.7 σ
- Also have direct v_e measurement.

K. McFarland, Rochester

Direct Measurments of ν_e Flux

- 1. v_{μ}^{CC} (wrong-sign) events in anti-neutrino beam constrain charm and K_L production
- 2. Shower shape analysis can statistically pick out v events ($E_v > 80$ GeV)
 - Most precise at highest energies
 - Good agreement in peak flux region (80< E_v <180 GeV)</p>

$$N_{meas} / N_{MC} : 1.05 \pm 0.03 (v_e) \\ 1.01 \pm 0.04 (v_e)$$

- Poor agreement with simulation on high energy tail (expected from inability to measure high E v_{μ}^{CC} , smearing)
 - Remove events from analysis with $E_v > 180 \text{ GeV}$. Concern?

Feel-Good Checks of v_e

K. McFarland, Rochester

Stability Checks

Is NuTeV Result robust if data is sub-divided to highlight different kinematic regions, backgrounds?

Why We (NuTeV) Believe the Experimental Analysis: "Stability Tests"

Verify systematic uncertainties 0.03 χ^2/ndf 49.78 62 <(data)-R(MC) with data to Monte Carlo 0.02 ν 86.8% probability comparisons as a function of 0.01 0 exp. variables. -0.01 Longitudinal Vertex: checks -0.02-0.03detector uniformity 10 20 30 40 50 60 70 80 longitudinal vertex (counters) 0.06 0.04 0.02 0 0.02 0 0.02 0.06 49.13 χ^2/ndf 62 Note: Shift from zero ν 2% probability is because NuTeV result differs from Standard Model -0.04-0.0610 20 30 40 50 60 70 80 longitudinal vertex (counters)

Stability Tests (cont'd)

R_{exp} vs. length cut: Check NC \leftrightarrow CC separation syst.

- "16,17,18" L_{cut} is default: tighten ↔ loosen selection

Yellow band is stat error

Distributions vs. E_{had}

8 October 2003

K. McFarland, Rochester

Stability Test: R_{exp} vs. Energy

- Modeling of NC/CC Ratio vs. visible energy checks
 - backgrounds
 - cross-section model
 - detector effects

Bottom line: no obvious causes for concern

LO Cross-Section Model

- 1. How does the model work? How is it used?
- 2. NLO Corrections

Enhanced LO Cross-Section

- "Enhanced" means: include R_L and higher twist terms
- PDFs extracted from CCFR data exploiting symmetries:
 - Isospin symmetry: $u^{p}=d^{n}$, $d^{p}=u^{u}$, and $s(x) = \bar{s}(x)$
- Data-driven: uncertainties come from measurements

- R_L , F_2 higher twist (from fits to SLAC, BCDMS)
- d/u constraints from NMC, NUSEA(E866) data

high y events are background to the neutral current sample

– Charm sea from EMC F_2^{cc}

Model is fit directly to this data; uncertainties come from data.

8 October 2003

CCFR Data

K. McFarland, Rochester

Charged-Current Control Sample

- Medium length events, clearly CC but with similar kinematics to NC candidates from CC events, check modeling
- Excellent agreement with prediction

PDF changes have little effect

(S.Davidson et al. hep-ph/0112302)

Extreme variations with LO/NLO PDF Sets (no NLO m_c effects). No attempt to make cross-section model + PDFs fit v data!

- Illustrates (relative) independence of R⁻ from (most) PDF details, even s(x) !
- But this does not prove NLO effects are small
- Also, this is R⁻, not the full NuTeV analysis.
How is R⁻ Changed in NLO QCD?

$$R^{-} \approx \Delta_{u}^{2} + \Delta_{d}^{2} + \frac{1}{2} \left(\frac{U^{-} - D^{-} + C^{-} - S^{-}}{U^{-} + D^{-}} \right) \left[\left(3\Delta_{u}^{2} + \Delta_{d}^{2} \right) + \frac{\alpha_{s}}{2\pi} \left(\Delta_{u}^{2} + \Delta_{d}^{2} \right) \left(\frac{C^{1}}{4} + \frac{3C^{2}}{4} - C^{3} \right) \right]$$

where $U^{-} = \int x(u - \overline{u}) dx$ in target, etc. $C^{i} = \text{NLO coefficient fcns. in SF } F_{i}$ $\Delta_{u,d}^{2} = \left(\varepsilon_{L}^{u,d}\right)^{2} - \left(\varepsilon_{R}^{u,d}\right)^{2}$

(S.Davidson et al. hep-ph/0112302, K. McFarland and S. Moch hep-ph/0306052, S. Kretzer and M-H. Reno unpublished, B. Dobrescu and K. Ellis to appear)

So NLO terms only enter multiplied by isovector valence quark distributions

- for NuTeV this is a numerically negligible correction
- however, again, NuTeV does not measure precisely R⁻

Numerical Evaluation of NLO QCD Effects

	Davidson et al	McFarland- Moch (I)	McFarland- Moch (II)	Kretzer-Reno	Dobrescu- Ellis
NuTeV PDFs		\checkmark	\checkmark		
Gluon, Sea contributions (cancel in R ⁻)					
Experimental Cuts			\checkmark		
Realistic Treatment of Target Mass, Heavy Flavor					
δNLO	N/A	-0.0003	-0.0003	-0.0004	+0.0015

Final Word on NLO QCD Effects

None of these analyses

- account for fitting CCFR CC cross-sections and dimuon data at same order
- check background predictions at NLO
- Full NLO Analysis
 - Ellis and Dobrescu have written a generator
 - invaluable assistance! thank you!
 - too slow by 1-2 orders of magnitude to use. Working to improve.
 - need additions to associated evolution code for strange sea
 - Work in progress...

NuTeV's Use of Neutrino and Anti-Neutrino Data

What's the difference between NuTeV and R⁻?

Paschos-Wolfenstein at NuTeV

K. McFarland, Rochester

How is NuTeV's Analysis Different from R⁻? (Details)

- Backgrounds (cosmic rays, non-neutrino events)
 - Taken from data. Only increase statistical errors.
- **Cross-talk** (including v_e background)
 - Dilute statistical significance of the result $\Rightarrow \left| \frac{\partial \sin^2 \theta_W}{\partial 2} \right| < \left| \frac{\partial R^-}{\partial 2} \right|$
 - − In the case of v_{μ}^{CC} , cross-talk occurs for particular kinematics ■ High y, large θ_{μ}
- Different NC, CC acceptance
 - Very small effects from muon (energy, vertex). Likely negligible?
- Use of external dimuon constraint on charm suppression ("m_c") reduces role of anti-neutrino data
 - Sensitive to charm model
 - And to non-QPM cross-section, e.g. R_L

How is NuTeV's Analysis Different from R⁻? (cont'd)

- If this charm mass constrained fit were the problem, we should see a big difference when extracting $sin^2\theta_W$ without constraint...
- See very small difference if charm mass constraint dropped.
 - This is equivalent to saying that R v is in agreement with expectations.

 $\sin^2 \theta_W^{(on-shell)} = 0.2274 \pm 0.0014(stat.) \pm 0.0008(syst.)$

Statistical and experimental systematics increase Model errors, of course, decrease...

Electroweak Radiative Corrections

Are they a concern?

EW Radiative Corrections

- I see no serious reason to believe effective coupling calculations are inadequate. Comments?
- EM radiative corrections are large
 - Bremsstrahlung from final state lepton in CC is a big correction.
 - Not present in NC; promotes CC events to higher y so they pass energy cut.
 - {δR ^v, δR ⁻/_v, δsin²θ_W} ≈ {+.0074,+.0109,-.0030}
 - These should be checked.
 (Baur, Dittmaier, Hollik)
 - D. Yu. Bardin and V. A. Dokuchaeva, JINR-E2-86-260, (1986)

Dividing NuTeV Data into Regions in Q²

What can we check to mitigate concerns about low Q² data?

Low Q² Contributions to NuTeV Analysis

- Bulk of NuTeV data is high Q², but some data with Q²<1 GeV² is in analysis 30000 F
 - visible energy cut limits this to very low x since $Q^2 = 2Mvx$

sea region, common to v and anti-v

 $\left\langle Q^2 \right\rangle = \frac{25 \,\mathrm{GeV}^2 \,\nu}{16 \,\mathrm{GeV}^2 \,\overline{\nu}}$

- Unfortunately, for neutral currents, we don't reconstruct Q²
- However, E_{visible} and Q² are correlated by q(x)

Distributions vs. E_{visible}

8 October 2003

K. McFarland, Rochester

QCD Symmetry Violations in R⁻

What symmetry violations can affect the result?

- 1. $u \neq d$ in target (neutron excess)
- 2. asymmetric heavy seas
- 3. process dependent nuclear effects

Symmetry Violating QCD Effects

- Paschos-Wolfenstein R⁻ assumptions:
 - Assumes total u and d momenta equal in target
 - Assumes sea momentum symmetry, $s = \bar{s}$ and $c = \bar{c}$
 - Assumes nuclear effects common in W/Z exchange
- To get a rough idea of first two effects, can calculate them for R⁻ $-\delta N \left(\frac{U_v - D_v}{U_v + D_v} \right) \left(3\Delta_u^2 + \Delta_d^2 \right) \qquad \text{where } \delta N = \frac{(N - Z)}{A}$ $U_v = \int x(u_v^p + d_v^p) dx, \text{ etc.}$ $\delta U_v = \int x(u_v^p - d^n) dx \text{ etc.}$ $R^- \approx \Delta_u^2 + \Delta_d^2$ $-\frac{1}{2} \left(\frac{\delta U_v - \delta D_v}{U_v + D_u} \right) \left(3\Delta_u^2 + \Delta_d^2 \right)$ $\Delta_{u,d}^2 = \left(\varepsilon_L^{u,d}\right)^2 - \left(\varepsilon_R^{u,d}\right)^2$ $\delta S = \int x(s - \overline{s}) dx$ $+ \left(\frac{\delta S}{U_v + D_v}\right) \left(2\Delta_d^2 - (3\Delta_u^2 + \Delta_d^2)\varepsilon_c\right)$ ε_c = kinematic charm CC suppression

8 October 2003

K. McFarland. Rochester

Symmetry Violating QCD Effects

- Violations could arise from (ref. for theory motivation)
 - 1. $A \neq 2Z$ due to neutron excess (corrected for in NuTeV)
 - Isospin violating PDF's, u_p(x) ≠ d_n(x)
 (Sather; Rodinov, Thomas and Londergan; Cao and Signal)
 Changes d/u of target ⇒ mean NC couplings and CC rates
 - 3. Asymmetric heavy-quark sea, $s(x) \neq \overline{s}(x)$ (Signal and Thomas; Burkhardt and Warr; Brodsky and Ma)
 - Strange sea doesn't cancel in R⁻
 - 4. Mechanisms for different nuclear effects in NC/CC (*Thomas and Miller; Kumano; Schmidt et al; Kulagin*)
 - Affects R^{v} , $R^{\overline{v}}$ directly

Detailed Examination of Symmetry Violation Effects

"On the Effects of Asymmetric Strange Seas and Isospin-Violating Parton Distribution Function Measured in the NuTeV Experiment (G.P. Zeller et al., Phys.Rev.D65:111103,2002) -torize the shifts from

Parameterize the shifts from various asymmetries for the NuTeV sin² θ_{W} analysis technique

Conclusions:

- require a ~5% minority ($d^p \neq u^n$) valence quark isospin violation
- or a ~30% momentum difference between strange and anti-strange seas

The NuTeV Neutron Excess

How it is evaluated

Neutron excess correction

Neutron excess of target is well-known

- primary *a priori* uncertainty, chemical composition of steel, resolved by assay. (N.B, not just steel... lots of H_2O , CH_n) $\delta N = 0.00574 \pm 0.00002$
- correction for U_v - D_v is large, -0.0080 in sin² θ_W

but it is well-constrained by existing data:

NMC Gottfried Sum Rule Data NUSEA pp, pd Drell-Yan

- N.B., PRL uncertainty is too small, ±0.0003 is new estimate
 - Thanks to S. Kulagin and S. Alekhin for catching our mistake!

K. McFarland, Rochester

Isospin Violation in PDFs

- 1. Impact on NuTeV
- 2. Experimental Constraints
- 3. Models

Isospin Violation in PDFs

- Isospin symmetry violation: $u^p \neq d^n$ and $d^p \neq u^n$ (called "charge symmetry violation" in nuclear physics literature)
 - Three models shown:
 bag model ("Sather et al"),
 bag model w/ smearing ("Thomas et al"),
 meson cloud model ("Cao et al")
 - Not clear how much information is contained in these models... more on this later

- What is needed to explain the NuTeV data?
 - e.g., a 5% excess of momentum carried by d_p over that of u_n
 - what is "back of the envelope" effect?
 - terms of order
 - $(m_{d}-m_{u})/m_{p}\sim 0.5\%,$
 - (m_n-m_p)/m_p~0.1%
 - Do global PDF fits allow enough isospin violation to explain NuTeV?

What Can Global Fits Say?

- Unfortunately, not a lot.
- Conclusion of MRST study:
 - even with very restrictive functional form, constraint is almost non-existent.
 - could accommodate enough isospin to explain NuTeV.
 - could accommodate zero or isospin violation in the opposite direction
- Need more data

Martin et al, hep-ph/0308087

Figure 6. $\Delta \chi^2$ against the isospin violating parameter κ .

Isopin Violation

Bag models offer a useful framework for estimating effect

– NuTeV has used "full Bag Model" calculation (Rodionov, Thomas, Londergan, MPL A9 1799) and obtained

 $\Rightarrow \Delta sin^2 \theta_W = -0.0001$ (G.P. Zeller et al., Phys.Rev.D65:111103,2002)

- But Londergan and Thomas recently suggested the effect is actually -0.0017 in magnitude. What is going on? Not surprisingly, it's a complex story.
- NuTeV original calculation
 - take Rodionov et al. bag model (δd_v/d_v)(x) at high Q² and multiply by d_v(x) from data
 - this is not rigorous...

Londergan and Thomas

- revived analytic technique of Sather (PLB 274, 433) in hep-ph/0301147
 - analytic relation applied to phenomenological PDFs at bag scale

$$\delta d_{\nu}(x) = -\frac{1}{M_{N}} \left[(\delta M_{N}) \frac{d[xd_{\nu}(x)]}{dx} + (\delta m_{q}) \frac{d[d_{\nu}(x)]}{dx} \right]$$
$$\delta u_{\nu}(x) = \frac{1}{M_{N}} \left[(\delta M_{N}) \frac{d[xu_{\nu}(x)]}{dx} - (\delta M_{N}) \frac{d[u_{\nu}(x)]}{dx} \right]$$

- L&T took NLO PDFs (CTEQ3D) at Q² of 2.56 GeV², didn't evolve it up in Q² but have shown this is OK.
- neglects "diquark smearing"

Isospin Violation (cont'd)

Compare analytic calculations calculations:

- KSM/Sam Zeller analytic analysis (Sather technique) agrees roughly with NuTeV published ad hoc result (without "diquark smearing")
 - δd_v effect on sin² θ_w is 0.0005 (PRD65:111103,2002) \rightarrow 0.0006
- Londergan & Thomas (hep-ph/0301147) show 0.0009 for same quantity
 - effect of different input PDFs? has not been resolved.

Isospin Violation (cont'd)

- Diquark what? Huh?
 - Analytic Sather relationship uses the idea that a DIS process removes one quark from the "bag", leaving a remnant behind, to measure $u_n(x)$ $d_p(x)$
 - Isospin violation arises from
 - difference in initial state energy (mass) between proton and neutron
 - difference in final state energy "diquark mass" (dominant effect)

8 October 2003

K. McFarland, Rochester

Isospin Violation (cont'd)

What is "diquark smearing"?

 Idea that energy of diquark in final state struck nucleon is not a delta-function but has some width

- In Rodionov et al calculation with NuTeV approximate technique, smearing wipes out effect. Is it right?
- Model appears to be highly sensitive to this level of detail.
- This is a concern if relying on models.

Asymmetric Strange Sea

- 1. How it is measured at NuTeV
- 2. Outside Analyses
- 3. Impact on NuTeV $sin^2\theta_W$

A Very Strange Asymmetry

- Paschos-Wolfenstein relation assumes that strange sea is symmetric, i.e., no "valence" strange distribution
 - if there were on, this would be a big deal since it is an isovector component of the PDFs (charm sea is heavily suppressed)
- 30% more momentum in strange than anti-strange seas would be enough to make NuTeV agree with SM
- Why might one think that the strange and anti-strange seas would be different?
- Non-perturbative QCD effects could generate a strange vs. antistrange momentum asymmetry in the nucleon
 - decreasing at higher Q²

Brodsky and Ma, Phys. Let. B392

How Does NuTeV Measure This? $v_{\mu} N \rightarrow \mu^{\mp} \mu^{\pm} X$

µ[±] from semi-leptonic charm decay

v beam: s, d (Cabbibo supp.) $\rightarrow c$ \overline{v} beam: $\overline{s}, \overline{d}$ (Cabbibo supp.) $\rightarrow \overline{c}$

- Fits to NuTeV and CCFR v and \overline{v} dimuon data can measure the strange and antistrange seas separately
 - NuTeV separate vand \overline{v} beams important for reliable separation of s and \overline{s}

8 October 2003

K. McFarland, Rochester

8 October 2003

K. McFarland, Rochester

Any asymmetry in Dimuons?

- Collapse the data in E, y as function of x
- Solid line assumes symmetric sea
- Independent of parameterization, no significant asymmetry

strange dimuon production ratio, averaged over y, E and Experiments

Preliminary NLO Analysis of NuTeV **Dimuon Data**

$$s(x) = \kappa \frac{\overline{u}(x) + \overline{d}(x)}{2} (1-x)^{\alpha}$$

$$\overline{s}(x) = \overline{\kappa} \frac{\overline{u}(x) + \overline{d}(x)}{2} (1-x)^{\overline{\alpha}}$$

Dave Mason et al.(NuTeV Collab.), **ICHEP02** Proceedings

Table 1

Results from the preliminary 6 parameter fit to the NuTeV dimuon cross section tables

parameter	result	\pm stat.	\pm syst.	
m_c	1.46	± 0.24	± 0.07	
κ	0.516	± 0.033	± 0.031	
$\mathbf{s} = \overline{\mathbf{s}}\overline{\kappa}$	0.511	± 0.038	$\pm \ 0.040$	
α	0.73	± 0.47	± 0.52	
$\overline{\alpha}$	0.92	± 0.43	± 0.06	
ϵ	0.203	± 0.13	± 0.04	
χ^2/NDF		36.2/38		

N.b., Parameterized strange sea shape is used as an approximation

0.1

"Inclusive" Measurements, A Prehistory

– not in favored region for models, but...

The Barone s - \overline{s} would increase by 5% the total v dimuon cross-section, all at x>0.5

 $\delta \sin^2 \theta_{W} \approx -0.001$

- NuTeV+CCFR dimuon data limits any such contribution at x>0.5 to 0.2% (0.6%) in the neutrino (antineutrino) dimuon rates at 90% CL
- End of story. This should, in my opinion, serve as a cautionary tale when extracting s and \overline{s} from global fits. Comments?

K. McFarland, Rochester

Recent Results (pre-CTEQ)

- Dimuon fits to CCFR/NuTeV data
 - Goncharov et al [NuTeV] LO"+" QCD Zero asymmetry (CTEQ, GRV d-quark PDFs) or Small asymmetry, $-(9\pm5)\%$ $\int xs(x) < \int x\overline{s}(x)$ (NuTeV internal LO+ d-quark PDFs on iron)
 - Mason et al [NuTeV] NLO [ICHEP02]
 - Zero asymmetry (CTEQ, GRV d-quark PDFs)
- Update of Inclusive data fits
 - Portheault et al [BPZ update] NLO Zero asymmetry [DIS03]

CTEQ "Lepton-Photon" Result Olness, Tung *et alia* [CTEQ] NLO/LO fit *Small asymmetry*, ~+10% (CTEQ NLO d-quark PDFs) $\int xs(x) > \int x\overline{s}(x)$

- inconsistency with zero not claimed

- uses inclusive data and dimuons
- Paper speculates about errors in NuTeV analysis
 - Strangeness not conserved at x below charm production threshold
 - Evolution not correct for assumed functional form
 - They are good points; do they matter?
Dimuon Data and Asymmetry

strange dimuon production ratio, averaged over y, E and Experiments

x region of CTEQ asymmetry is covered by NuTeV dimuon data

- so it's all a question of interpretation...

K. McFarland, Rochester

What Needs to Be Resolved?

NuTeV

- Functional form does not evolve correctly
 - from Q₀ of 12.6 GeV² to range of 4-100 GeV²
- Strangeness not conserved (low x)
- Not global fit
 - with outside PDFs, d-quark distributions not adjusted for changes in s(x)

CTEQ

- Inclusive measurements fit to same PDFs with NLO crosssection that go into LO crosssection for dimuons
- Dimuon acceptance mildly inconsistent with data
- m_c used isn't best fit to dimuon data
- Nuclear corrections for proton PDFs handled consistently in two analyses?

Current NuTeV Status

- Have refit at NLO with total strangeness constraint of CTEQ
- See little change in net momentum difference
 - Still precise constraint.
 Still weakly negative
 - Panagiotis Spentzouris is here and can give details if desired
- Work is ongoing

Summary on Strange Sea

- A 30% excess of strange momentum over anti-strange would explain the NuTeV sin²θ_W
- NuTeV analysis is consistent with zero, weakly negative using "all-iron" internal PDFs
 - uncertainty of 5% with assumed functional forms
- CTEQ measurement favors +10%
- We need to sort this out, but it won't "fix" the NuTeV sin²θ_W

Nuclear Effects

- 1. Introduction
- 2. Constraints on Effects

Nuclear Effects

- Use NuTeV CC data to fit parton distributions
 - PDFs that enter are already on iron
 - Need to worry about nuclear effects that could be different for W and Z exchange?
- NuTeV kinematics are high Q² valence distributions
 - $< E_v > ~100 \text{ GeV}$
 - Sea cancels in R⁻
- Fermi motion, Pomeron component of shadowing process independent. EMC?

 $25 \,\mathrm{GeV}^2 \,\underline{v}$

 $\langle Q^2 \rangle =$

Nuclear Effects (cont'd)

- There is not arbitrary freedom in the data to introduce process dependent nuclear effects
- CC and EM F₂ on iron are in agreement!
- No analogous independent test that EM and NC would have common nuclear effects

Nuclear Effects (cont'd)

- Shadowing due to VMD would be different EM, NC and CC (Miller and Thomas, hep-ex/0204007)
 - Weak evidence for predicted $1/Q^2$ dependence in the NuTeV kinematic region x > 0.01 (NMC)
 - But lower x, Q² data suggests
 VMD (Melnitchouk and Thomas, hep-ex/0208016)
 - Low-x phenomena like VMD affect mainly sea quarks and the effect is canceled in R⁻
 - \blacksquare Would increase both R^{v} and R \bar{v}
 - This model would make a very large R^ν shift (4.5σ from SM)
 - A much larger effect is needed for R⁻

68%,90%,95%,99% C.L. Contours, Grid of SM $\pm 1\sigma$ mtop, m_{Higgs}

Shadowing effects neutrino and anti-neutrino data in the same way. Systematic controlled by R⁻ technique.

Nuclear Effects (cont'd)

Other ideas...

- Schmidt *et al* have proposed that the EMC effect is absent in CC (Kolvaenko, Schmidt, Yang, hep-ph/0207158)
 - An effect of that size would explain NuTeV
 - However, this would massively violate the F₂ CC/EM agreement shown previously
- Kumano: are nuclear effects flavor dependent?

(Kumano, hep-ph/0209200)

- fits to data show large effect at at high x (physical reason?)
- Iow x effect is non-zero, small
 - absence of D-Y anti-shadowing?
- effect is negligible for NuTeV
- Kulagin: Fermi motion, binding effects and shadowing.
 - Concluded all are small effects for NuTeV

Conclusions

Sound Bites

Experimental concerns were paramount to us...

- but they seem to be generating little concern now
- v_e backgrounds are slightly underestimated if BNL-E865 is correct about K_{e3} BR. Increases discrepancy by 0.7 sigma
- Isospin violating PDFs
 - guidance from models and data is minimal
 - this could be the explanation if violation larger than one might guess a priori
 - need data! rah rah FNAL-P906!

Sound Bites (cont'd)

Strange Sea

- NuTeV dimuon data has the precision to address this
- NuTeV analysis shows zero or weakly negative asymmetry
- CTEQ finds positive asymmetry
- Both CTEQ and NuTeV are working to resolve this

Nuclear effects

- data constrains possibilities at high x (EMC region)
- shadowing region doesn't have the desired effect

Sound Bites (cont'd)

Electroweak Radiative Corrections

- No reason to think anything is wrong here, but...
- Corrections are large. Bremsstrahlung correction relies on one calculations
- New calculations are in the works
- NLO QCD corrections
 - Calculated to be small (except recent Dobrescu-Ellis which shows an increase in discrepancy of 1 sigma)
 - However, results do show a full NLO analysis would be a prudent step

Sound Bites (cont'd)

Others

- deficit of neutrino NC don't appear only at low $Q^2(v)$
- neutron excess correction under control
 - originally underestimated *uncertainty*; its contribution is about 1/10 of total systematic

Summary

For NuTeV the SM predicts 0.2227 ± 0.0003 but we measure

 $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0013 (\text{stat.}) \pm 0.0009 (\text{syst.})$

- No obvious experimental problems.
- "Old physics" effects are a possibility
 - But no attractive explanation now exists
 - Very large isospin violation is a possibility...
 - Nuclear effects? Constrained by data.
 - NLO seems unlikely, but...
 - QED corrections large. To check...
- Beyond SM Physics?

- Candidate explanations are unattractive, in conflict with other data or require too many miracles...
 - Maybe NuTeV has found something unattractive!
- The result remains an interesting puzzle

Fish in a barrel, perturbatively or not, Those arrows sure sting