MC Tuning from TeV to LHC based on Dijet Azimuthal Decorelations

Markus Wobisch, Fermilab

TeV4LHC Workshop – September 16, 2004

- Motivation / Observable
- Experimental Results
- Fixed Order pQCD Description
- MC Tuning to TeV Data
- Extrapolation to LHC Energies?

in collaboration with: A. Kupčo, M. Begel, C. Royon, M. Zieliński

Monte Carlos – what can be tuned?

event topology: fundamental signature + broad features + fine details

Monte Carlo Event Generators:

- LO Matrix Elements for fundamental process (e.g. $2 \rightarrow 2$) \rightarrow normalization uncertainty!
- perturbative parton cascade models (based on soft and collinear approximations)
- phenomenological models for non-perturbative phase (hadronization, underlying event)

Tuning MCs?

- LO MEs are exact (use most recent α_s and MRST/CTEQ pdfs)
- everything else can be tuned!! plenty of parameters in PYTHIA / less in HERWIG

How to tune MCs? (don't use "hard" parameters to fix "soft" physics)

- first: find k-factor to fix normalization problem or use normalized differential distrib.
- third: tune soft physics to describe finer details

Dijet Production:

limit: exactly two jets, no further radiation

azimuthal opening angle between both leading p_T jets:

$$\Rightarrow \Delta \phi_{\mathrm{dijet}} = \pi$$

Dijet Production:

- limit: exactly two jets, no further radiation
- additional soft radiation outside the jets

azimuthal opening angle between both leading p_T jets:

$$\Rightarrow \Delta \phi_{\rm dijet} = \pi$$

 $\Longrightarrow \, \Delta \phi_{\, \rm dijet}$ small deviations from π

Dijet Production:

- limit: exactly two jets, no further radiation
- additional soft radiation outside the jets
- ullet one additional high p_T jet

azimuthal opening angle between both leading p_T jets:

$$\Rightarrow \Delta \phi_{\text{dijet}} = \pi$$

$$\Rightarrow \ \Delta\phi_{
m \, dijet}$$
 small deviations from π

$$\Rightarrow \Delta \phi_{\rm dijet}$$
 as small as $2\pi/3$

Dijet Production:

- limit: exactly two jets, no further radiation
- additional soft radiation outside the jets
- ullet one additional high p_T jet
- multiple additional hard jets in the event

azimuthal opening angle between both leading p_T jets:

$$\Rightarrow \Delta \phi_{\text{dijet}} = \pi$$

$$\Rightarrow \Delta \phi_{
m dijet}$$
 small deviations from π

$$\Rightarrow \Delta \phi_{\text{dijet}}$$
 as small as $2\pi/3$

$$\Rightarrow$$
 small $\Delta\phi_{\rm dijet}$ – no limit

Dijet Production:

- limit: exactly two jets, no further radiation
- additional soft radiation outside the jets
- ullet one additional high p_T jet
- multiple additional hard jets in the event

azimuthal opening angle between both leading p_T jets:

$$\Rightarrow \Delta \phi_{\text{dijet}} = \pi$$

$$\Rightarrow \ \Delta\phi_{
m dijet}$$
 small deviations from π

$$\Rightarrow \Delta \phi_{\text{dijet}}$$
 as small as $2\pi/3$

$$\Rightarrow$$
 small $\Delta \phi_{\text{dijet}}$ – no limit

 $\Rightarrow \Delta \phi_{\rm dijet}$ distribution is sensitive to higher order pQCD effects without requiring the reconstruction of additional jets (Yes: this is an experimental advantage!!)

 $\Rightarrow \Delta \phi$ dijet: examine transition between soft and hard physics, based on single observable

Defining the Observable

- define the jets using iterative, seed-based midpoint cone algorithm with $R_{\rm cone}=0.7$ in rapidity and azimuthal angle (the "Run II cone algorithm" \Leftarrow Run II Workshop)
- Define the observable to be the normalized differential $\Delta\phi$ _{dijet} distribution:

$$\frac{1}{\sigma_{\rm dijet}} \cdot \frac{d\sigma_{\rm dijet}}{d\Delta\phi_{\rm dijet}}$$

- measure the observable as a function of a hard scale: $\Rightarrow \text{ in four different regions of the leading jet } p_T \text{ starting at } p_T^{\max} > 75 \text{ GeV}$ requiring the second leading p_T jet to have $p_T > 40 \text{ GeV}$
- require that both leading p_T jets have central rapidity $|y_{\rm jet}| < 0.5$

the $\Delta\phi$ dijet distribution is a three-jet observable! the ratio is $\propto \alpha_s^3/\alpha_s^2$ recently available: NLO pQCD predictions for 3-jet observables: pQCD at $\mathcal{O}(\alpha_s^4)$ (NLOJET++, Z. Nagy)

Non-Perturbative Effects

Hadronization Corrections:

Obs._{hadron}
Obs._{parton}

 $\underline{ \ \, \text{Underlying Event:} \ \, \frac{\text{Obs.}_{\text{with UEVT}}}{\text{Obs.}_{\text{w/o UEVT}}} }$

Non-perturbative effects are below 5% \implies only sensitive to perturbative effects

Experimental Results

First Tevatron Run II QCD Jet Publication hep-ex/0409040 submitted to PRL today!

- data in four p_T^{max} regions:
- \Rightarrow more strongly peaked at high $p_T^{\sf max}$
- \Rightarrow decreasing by more than 4 orders of magnitude from $\Delta\phi_{\rm dijet}=\pi$ to $\pi/2$

Experimental Results

First Tevatron Run II QCD Jet Publication hep-ex/0409040 submitted to PRL today!

- data in four p_T^{max} regions:
- \Rightarrow more strongly peaked at high $p_{\scriptscriptstyle T}^{\sf max}$
- \Rightarrow decreasing by more than 4 orders of magnitude from $\Delta\phi_{
 m dijet}=\pi$ to $\pi/2$
 - LO pQCD prediction is poor
- \Longrightarrow reasonable only in limited $\Delta\phi$ dijet range
- $\Rightarrow \Delta \phi_{\rm dijet} < 2\pi/3$ no phase space
- $\Rightarrow \Delta \phi_{\rm dijet} \to \pi \, {
 m divergence}$
 - NLO pQCD prediction is very good
- \Rightarrow (see ratios for details)

Quantitative Comparison: Data and NLO

- NLO pQCD:
- good description of the data on average 5–10% below data
- \Rightarrow except at $\Delta \phi_{\rm dijet}$ close to π (soft processes needs resummation)
 - renormalization and factorization scale dependence:

$$0.25 p_T^{\rm max} < \mu_{r,f} < p_T^{\rm max}$$

- \Rightarrow small at intermediate $\Delta \phi$ dijet
- \Longrightarrow large at $\Delta\phi_{
 m \, dijet} o \pi$ (soft region)
- \Rightarrow large at $\Delta\phi_{
 m dijet} < 2\pi/3$ (only tree-level four parton final states)
 - PDF uncertainty using CTEQ6.1M pdfs
- \Rightarrow dominant at intermediate $\Delta \phi$ dijet larger in high $p_T^{ exttt{max}}$ region

Comparison: Data and MCs

- HERWIG v6.505 (default)
- \Rightarrow good description of the data over whole $\Delta\phi_{\rm dijet}$ range
 - PYTHIA v6.225 (default)
- \Longrightarrow significantly too low at small $\Delta\phi$ $_{ ext{dijet}}$
- \Rightarrow too narrowly peaked at π

Comparison: Data and MCs

- HERWIG v6.505 (default)
- \Rightarrow good description of the data over whole $\Delta\phi_{\rm dijet}$ range
 - PYTHIA v6.225 (default)
- \Rightarrow significantly too low at small $\Delta\phi$ dijet
- \Rightarrow too narrowly peaked at π
 - changing maximum p_T in ISR shower (remember: Rick Field's PYTHIA "tune A")
- \Rightarrow change: PARP(67)=1.0 \rightarrow 4.0 PARP(67) \times hard scale ($\simeq p_T$) defines the maximum virtuality in ISR shower
- \Rightarrow directly related to max. p_T in ISR shower
- \Rightarrow huge effect for $\Delta\phi$ dijet distribution
- best value somewhere between PARP(67)=1.0 and =4.0
 - ⇒ hard processes can be adjusted!

Data and MCs — looking at $\Delta\phi_{ m dijet}pprox\pi$

- zoom into the peak
- this is where NLO fails (soft processes!)
- where parton shower should work

use same MCs as before:

- HERWIG (default)
- ⇒ slightly to narrow but reasonable
 - PYTHIA (default)
- \Rightarrow much too narrowly peaked at π too low everywhere else
 - PYTHIA with PARP (67)=4.0
- \Rightarrow too narrow in peak
- \Rightarrow too low at $\Delta\phi_{\rm dijet} \approx 15\pi/16$ (low $\Delta\phi_{\rm dijet}$ tail slightly high)

⇒ more tuning needed for PYTHIA to describe peak region (soft processes)

Tuning PYTHIA – soft processes

vary PYTHIA parameters related to ISR

- $p_{T \text{ max ISR}}$ PARP(67)=4.0 (D=1.0)
- \Longrightarrow small effect at high $\Delta\phi$ dijet for low $p_T^{ ext{max}}$
 - $x_{\mu \, \text{ISR}}$ PARP(64)=0.5 (D=1.0)
- ⇒ effect is negligible
 - primordial k_T PARP(91)=4.0 (D=1.0) upper cut-off PARP(93)=8.0 (D=5.0)
- \Longrightarrow very small effect at high $\Delta\phi$ $_{ ext{dijet}}$ for low $p_T^{ ext{max}}$
 - \Rightarrow nothing helps!

Tuning PYTHIA – soft processes

vary PYTHIA parameters related to FSR:

- $p_{T \max ISR} \leftrightarrow PARP(67)$ was so successful
- ⇒ try the same thing for FSR
 - $p_{T \max FSR} \leftrightarrow PARP(71)$
- → increase: PARP(71)=8.0 (D=4.0)
 - ⇒ zero effect!
 - ⇒ Here we ran out of ideas...

More suggestions for PYTHIA parameters variations are welcome!!

HERWIG: we tried PTRMS=1.5 GeV (D=0) \Rightarrow no effect

From Tevatron to the LHC

NLO gives a very good description

⇒ use NLO as a reference

compare NLO predictions for $\Delta\phi_{\rm \,dijet}$ at Tevatron and LHC

for both: Run II cone algorithm, $|y_{\rm iet}| < 0.5$

- Tevatron Run II (as: hep-ex/0409040)
- $\Rightarrow p_{T2} > 40 \,\mathrm{GeV}$
- \Rightarrow four p_T^{\max} regions
 - LHC
- $\Rightarrow p_{T2} > 80 \text{ GeV}$
- \Rightarrow three p_T^{\max} regions

 \Rightarrow The chosen p_T^{max} ranges for the LHC results cover the spread of the Tevatron results

A last look at the Tevatron ...

best description by PYTHIA for PARP(67) between D=1.0 and 4.0

- tune PARP (67) to NLO
- \Rightarrow result: PARP(67)=2.5 (D=1.0)
- this setting is now referred to as "TeV-tuned"
 - (ignore the peak region...)
- \Rightarrow good agreement: HERWIG \approx PYTHIA \approx NLO

Question:

Can this good agreement (and the tune) be transferred to the LHC?

... and a first look at the LHC

... a huge success!!! - ... expected??

- PYTHIA (TeV-tuned)
- the good agreement with NLO at Tevatron Run II energies is reproduced at LHC energies!!
 - HERWIG (default)
- \Rightarrow small differences: broader at low $p_T^{
 m max}$ narrower at large $p_T^{
 m max}$

⇒ Both Monte Carlos are in good agreement with NLO predictions

Summary and Conclusions

using Dijet Azimuthal Decorrelations to test & tune Monte Carlo event generators:

- normalized distribution
- ⇒ not affected by poor absolute normalization of LO Matrix Elements
 - not sensitive to non-perturbative effects (hadronization, underlying event)
- ⇒ allows to tune perturbative parameters in MCs w/o interference of "soft parameters"
 - strategy must be:
- tune "hard parameters" first then the "soft parameters".
- ⇒ e.g. order: Dijet Azimuthal Decorrelations → Jet Shapes → Underlying Event
 - HERWIG: not much to tune (no parameters / but also: not necessary)
 - PYTHIA: only sensitivity: $p_{T \text{ max ISR}}$ result: PARP(67)=2.5 (D=1.0)
- ⇒ this should be the basis for a new Tevatron tune ("tune A-prime"?)

surprise: PYTHIA tuning can be transferred to LHC energies

⇒ very promising for tuning MCs for LHC!