The Diffractive Structure Function: ξ dependence

> Christina Mesropian The Rockefeller University

The Diffractive Structure Function

Single Diffractive dissociation

ξ - fractional momentum loss of p

$$\beta = \frac{x}{\xi}$$
 fraction of the **P** momentum carried by the struck parton

Subject of interest:

Hard diffraction process: production of high p_T dijets

Study the diffractive structure function

$$F_{jj}^{D}(x,Q^{2},\xi) = x \left[g^{D}(x,Q^{2},\xi) + \frac{4}{9}q^{D}(x,Q^{2},\xi) \right]$$

Regge factorization:

$$\boldsymbol{F}_{jj}^{D} = \boldsymbol{f}_{\mathbf{P}}(\boldsymbol{\xi}) \times \boldsymbol{F}^{\mathbf{P}}(\boldsymbol{\beta}, Q^{2})$$

Christina Mesropian

Small x Workshop 2003

2 dijet samples:

then

SD: diffractive – leading p ND: non-diffractive

Small x Workshop 2003

10

10

10

Power Law dependence

 $\boldsymbol{F}_{jj}^{D} = C \left(\frac{1}{\beta^{n}} \right) \left(\frac{1}{\xi^{m}} \right)$

for $\beta < 0.5$ $n = 1.0 \pm 0.1$ $m = 0.0 \pm 0.1$

discrepancy in normalization factorization breakdown

ξ dependence

contributions from reggeon exchange in $0.035 < \xi < 0.095$ range

if reggeon has different structure than pomeron

change in shape for R_{SD}_{ND} as a function of x

no ξ dependence

Small x Workshop 2003

The Diffractive Structure Function: Run 2:

Small x Workshop 2003

The Diffractive Structure Function: Run 2: Hardware

Beam Shower Counters:

scintillation counters around the beam pipe

detect particles traveling in direction from interaction point along beam pipe

 $5.5 < |\eta| < 7.5$ coverage

BSCs provide East and West gap triggers:

Small x Workshop 2003

The Diffractive Structure Function: Run 2: Trigger

gap trigger rate decreases with increasing luminosity – additional interactions "kill" gap

Trigger name	PS	Rate (<i>Hz</i>)	Cross Section
Level 1			
L1_GAP_WEST_JET5	1	101.2	12.8 µb
Level 2			
L2_PS500_L1_GAP_WEST_ &_JET5	500	0.20	27.6 nb
L2_JET15_&_L1_GAP_WES T_PS50	50	0.25	34.3 nb
L2_JET40_&_L1_GAP_WES T	1	1.63	223.0 nb
Level 3			
DIFF_GAPW_ST5	1	0.20	27.4 nb
DIFF_GAPW_JET20	1	0.11	15.3 nb
DIFF_GAPW_JET50	1	0.19	25.5 nb

Small x Workshop 2003

The Diffractive Structure Function: Run 2

determination of ξ :

from the information of final state particles in the diffractive mass system *X*

information from calorimeters:

forward calorimeters:

MiniPlugs: 3.5<|η|<5.1

 $\Delta \eta_{gap} \approx \ln \xi$

low ξ values 0.001 < ξ possibly... Christina Mesropian

Small x Workshop 2003

Roman Pots + Jet Sample

0.002< ξ < 0.05

consistent with Run I

BSCW-Gap + Jet Sample 0.001 < ξ Strategy for the analysis: •calculate ξ for each event •separate clean diffractive sample: •calculate x for dijet system •compare with ND Jet5 sample •cross checks with *RP*+*Jet5* sample •different Q² samples for the same trigger...

FACT:

New possibility to extend ξ range down to 0.001 for Q^2 100 GeV^2

QUESTION:

Will the ξ distribution at the Tevatron be the same as at HERA at very low ξ ?

ANSWER:

New results from CDF Run 2 data coming soon!

Small *x* Workshop 2003