# Central Rapidity Gaps in Events with a Leading Antiproton at CDF

#### **Mary Convery**

Rockefeller University for the CDF Collaboration



Small-x and Diffraction 2003

## **Introduction**

- Motivation: test QCD calculations of the Jet-Gap-Jet process
- 2 factors enter in the calculation
  - QCD (Bj 2-gluon, BFKL, ...)
  - Gap survival
- Eliminate gap survival ⇒ address QCD



- JGJ rate suppressed by
  - Jet radiation: perturbative, calculable in QCD
  - Nonperturbative effects, phenomenological models
- Determine nonperturbative experimentally

## **Introduction**

- Measure survival probability in soft diffraction experimentally
- Multiple gaps
  - First gap survived ⇒
     additional gaps also
     expected to survive
- Measure rate of additional (central) gaps in sample of events with a forward p
   Phys. Rev. Lett. 91, 011802 (2003)
- Suppression factor ≃ double ratio (2-gap/1-gap)/(1-gap/0-gap)



Single + Double Diffractive (SDD)

#### **Experimental method**

events

- Follow method used for DD measurement, where we looked for central gaps (overlapping η=0) in minimum-bias events
- Look for central gaps in events with a Roman-pot track (forward gap)
  - Better to look at gaps in a fixed frame because of detector effects
  - Can use MC to extrapolate to all gaps





## **Experimental method**



- 1.5M(1M) Roman-pot triggered events at √s=1800 (630) GeV from Tevatron Run 1C
- 0.06< $\xi_{\bar{p}}$ <0.09, | $t_{\bar{p}}$ |<1.0(0.2) GeV<sup>2</sup>
- Require hits in the Beam-Beam Counters (BBC) on the *p* side to exclude DPE
- Require ≤1 reconstructed vertex to exclude multiple p
  p interactions

## Monte Carlo simulation

- Minimum-bias event generator
  - Specifically designed to reproduce soft-interaction results from lower energy experiments
  - Differential cross sections from Regge theory
- Used to generate background (SD) events
- Modified to generate SDD
- Calorimeter response to low- $p_{\tau}$  particles modelled as in previous diffractive analyses ( $\eta$  dependent)



#### Number of events as a function of $\eta_{max}$ and $-\eta_{min}$



- Note η-dependent thresholds and calorimeter regions
   ( |η|<1.1 central, ~1.1<|η|<~2.4 plug, |η|>2.4 forward)
- $|\eta|_{max/min} \equiv 3.2$  for hits in BBC (3.2< $\eta$ <5.9),  $\eta_{min} \equiv -3.3$  for events with no hits on  $\overline{p}$  side



Mary Convery / Rockefeller University / 9/18/03 / Page 7 Small x and Diffraction 2003

## Number of events as a function of $\Delta \eta^0_{exp} = \eta_{max} - \eta_{min}$



- Fit background in small Δη<sup>0</sup> region (dominantly SD) and extrapolate to Δη<sup>0</sup>>3
  - Background is already small in region Δη<sup>0</sup>>3
  - Cross section does not depend strongly on details of MC
- To the extent the MC does fit the shape of  $\Delta \eta^0$ , we can use it to calculate the acceptance for hitting the BBC and to extrapolate the fraction of events with a 2<sup>nd</sup> gap to all gaps  $\Delta \eta > 3$

Fraction of Roman-pot triggered cross section with gap >3 at  $\sqrt{s}$ =1800 GeV ( $\sqrt{s'}$ ~441-540 GeV)

- Measured fraction of events with Δη<sup>0</sup><sub>exp</sub>>3
   0.159±0.001(stat)
- SD background (from SD MC) 0.012 (syst error determined by varying calorimeter E<sub>T</sub> thresholds)
- Acceptance for p-side BBC hit (from SDD, SD MC) A<sub>SDD</sub>=(68±6)%, A<sub>SD</sub>=(98±1)%
- Correct to nominal gaps (account for particles in gap below threshold)  $\Delta \eta^0_{nom} \equiv \ln(s's_0/M_1^2M_2^2)$  (from SDD MC) ×0.81  $R^{nom}_{\Delta \eta^0>3} = 0.174 \pm 0.001$ (stat) $\pm 0.030$ (syst)
- Extrapolate to all gaps >3 ×1.44 R=0.246±0.001(stat)±0.042(syst)

Fraction of Roman-pot triggered cross section with gap >3 at  $\sqrt{s}$ =630 GeV ( $\sqrt{s}'$ ~154-189 GeV)

- Measured fraction of events with Δη<sup>0</sup><sub>exp</sub>>3 0.175±0.002(stat)
- SD background (from SD MC) 0.024 (syst error determined by varying calorimeter E<sub>T</sub> thresholds)
- Acceptance for p-side BBC hit (from SDD, SD MC) A<sub>SDD</sub>=(81±4)%, A<sub>SD</sub>=(98±1)%
- Correct to nominal gaps (account for particles in gap below threshold)  $\Delta \eta^0_{nom} \equiv \ln(s's_0/M_1^2M_2^2)$  (from SDD MC) ×0.73  $R^{nom}_{\Delta \eta^0>3} = 0.138 \pm 0.001 (stat) \pm 0.032 (syst)$
- Extrapolate to all gaps >3 ×1.40 R=0.184±0.001(stat)±0.043(syst)

#### Fraction of events with a gap



- Find  $\simeq 20\%$  of *(Pp)* interactions in events with a leading  $\overline{p}$  have an additional rapidity gap  $\Delta \eta > 3$
- In comparison,  $\simeq 8\%$ of inelastic NSD ( $\overline{p}p$ ) interactions have a gap  $\Delta\eta > 3$
- Once one gap is produced, additional gaps are easier to produce

#### **Renormalized gap prediction**

- See "Diffraction in QCD", K. Goulianos, Presented at Corfu Summer Institute on Elementary Particle Physics, Corfu, Greece, 31 Aug - 20 Sep 2001, hep-ph/0203141.
- SD:  $d^2\sigma/d\Delta y'dt = CF_p^2(t)e^{2(\epsilon+\alpha't)\Delta y} \times \kappa \sigma_0 e^{\epsilon\Delta y'}$
- SDD:  $d^5\sigma/d\Delta y'dt... = CF_p^2(t)\prod_{i=1,2}e^{2(\epsilon+\alpha't_i)\Delta y_i} \times \kappa^2\sigma_0 e^{\epsilon(\Delta y'_1+\Delta y'_2)}$
- $\Rightarrow$  SDD/SD ~  $\kappa = g(t)/\beta(0) \simeq g(0)/\beta(0) = 0.17\pm0.02$
- We find (SDD/SD)  $\simeq$  0.2
- Ratio (1-gap/0-gap)/(2-gap/1-gap) also predicted (~survival probability)
- We find (DD/ND)/(SDD/SD)  $\simeq 0.08/0.2 = 40\%$

#### **Conclusions**

 Multiple gaps can be used to eliminate gap survival from QCD calculations



- Production of additional gaps should not be suppressed by gap survival probability
- (2-gap/1-gap)~κ
- Multiple gaps can also be used to measure the gap survival probability
  - (1-gap/0-gap)/(2-gap/1-gap) ~ 40%