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We review recent results in lattice QCD from numerical simulations that allow for a much more realistic QCD vacuum

than has been possible before. Comparison with experiment for a variety of hadronic quantities gives agreement to

within statistical and systematic errors of 3%. We discuss the implications of this for future calculations in lattice
QCD, particularly those which will provide input for B-factory experiments.

1. Introduction

In this talk we report on recent progress in lattice

QCD simulations that finally allows precise calcula-

tions of a broad, but restricted, range of important

non-perturbative quantities. For most of its 25 year

history, high precision calculations in lattice QCD

have been stymied by our inability to include re-

alistic effects from light-quark vacuum polarization.

Small quark masses, for u and d quarks in particu-

lar, were too expensive. Consequently quark vacuum

polarization was omitted (“quenched QCD”) in most

work. When vacuum polarization was included, usu-

ally only u and d quarks were kept (no s) and these

had masses 10–20× too large. Such approximations

led to uncontrolled systematic errors that could be

10–30% or larger in almost all lattice QCD calcula-

tions.

During the past three years, several lattice QCD

groups have been exploring a new discretization of

the quark action that is 50–1000 times faster than

previous discretizations, but also highly accurate.

These investigations have led to a series of simula-

tions that include u, d, and s quark vacuum polar-

ization, with u and d masses that are 3–5× smaller

than before. These masses are still unrealistically

large, but they are small enough to allow accurate

extrapolations to the physical masses. Consequently

lattice QCD errors can be reduced to a few percent,

and high precision non-perturbative QCD is now pos-

sible for the first time.

High precision non-perturbative QCD is essen-

tial to the experimental study of the Standard Model.

The CKM parameters ρ and η, for example, are con-

strained by experimental and theoretical results for

B-B mixing, B → πlν, K-K mixing, . . . . Each of

these quantities has a non-perturbative QCD part

and a weak interaction part. Current uncertainties,

of order 20%, in the QCD parts dominate the un-

certainties in ρ and η. It is critically important that

non-perturbative QCD errors be reduced to a few

percent, which is of order the experimental errors

expected from B-factories, CLEO-c, and the hadron

colliders.

High precision non-perturbative quantum field

theory may well be important for beyond the Stan-

dard Model, as well. Two of the three known in-

teractions (QCD and gravity) are strongly coupled.

New strongly-coupled field theories are quite pos-

sible, even likely, at LHC energies and/or beyond.

Strong coupling is generic at low energies in non-

abelian gauge theories, unless the gauge symmetry

is spontaneously broken; and, even then, the most

likely symmetry breaking mechanisms are dynami-

cal, which again requires strong coupling.

Here we will review the new developments in lat-

tice QCD techniques, and discuss recent calculations,

and possibilities (and limitations) for the future.

2. Lattice QCD Calculations

Lattice QCD calculations proceed by the discretiza-

tion of a 4-d box of space-time into a lattice. The

QCD Lagrangian is then discretized onto that lat-

tice. The spacing between the points of the lattice,

a, is ≈ 0.1 fm in current calculations and the length

of a side of the box is L ≈ 3.0 fm. Thus our simula-

tions can cover energy scales from ≈ 2 GeV down to

≈ 100 MeV.
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The Feynman Path Integral is evaluated numeri-

cally in a two-stage process. In the first stage, sets of

gluon fields (“configurations”) are created which are

representative “vacuum snapshots”. In the second

stage, quarks are allowed to propagate on these back-

ground gluon field and hadron correlators are calcu-

lated. The dependence of the correlators on lattice

time is exponential. From the exponent the masses

of hadrons of a particular JPC can be extracted, and

from the amplitude, simple matrix elements.

QCD as a theory has a number of unknown

parameters, the overall dimensionful scale of QCD

(≡ the bare coupling constant) and the bare quark

masses. To make predictions, these parameters must

be fixed from experiment. In lattice QCD we do this

by using one hadron mass for each parameter. The

quantity which is equivalent to the overall scale of

QCD on the lattice is the lattice spacing.

Lattice calculations are hard and time consum-

ing. Progress has occurred in the last thirty years

through gains in computer power but also, more im-

portantly, through gains in calculational efficiency

and physical understanding. One particular area

which revolutionized the field from the mid-1980s

was the understanding of the origin of discretiza-

tion errors and their removal by improving the lat-

tice QCD Lagrangian. Discretization errors appear

whenever equations are discretized and solved nu-

merically. They manifest themselves as a depen-

dence of the physical result on the unphysical lattice

spacing. In lattice QCD, as elsewhere, they are cor-

rected by the adoption of a higher order discretiza-

tion scheme. The complication in a quantum field

theory like QCD is the presence of radiative correc-

tions to the coefficients in the higher order scheme

which must be determined.

Determining such radiative corrections is a ma-

jor challenge for lattice QCD theorists. These involve

physics at momentum scales of order π/a, where a

is the lattice spacing, and, therefore they can be an-

alyzed using perturbation theory1 when a is small

enough, because of asymptotic freedom. The one-

and two-loop perturbative analyses that are required

are complicated by the exceedingly unwieldy Feyn-

man rules of lattice QCD. The rule for a single ver-

tex can run to several hundred pages of 6 pt text.

Computer automation is essential. Progress on these

calculations is currently the limiting factor in most

high precision work that is relevant to tests of the

Standard Model.

Physical understanding of heavy quark physics

on the lattice has also made a huge difference to the

feasibility of calculating matrix elements relevant to

the B-factory program on the lattice. The use of

non-relativistic effective theories requires the lattice

to handle only scales appropriate to the physics of

the non-relativistic bound states and not the (large)

scale associated with the b quark mass. B physics is

now one of the areas where lattice QCD can make

the most impact.

One area which has remained problematic, but

which this year’s results have addressed successfully,

is the handling of light quarks on the lattice. In par-

ticular the problem is how to include the dynamical

(sea) u/d/s quark pairs that appear as a result of

energy fluctuations in the vacuum. We can safely ig-

nore b/c/t quarks in the vacuum because they are so

heavy, but we know that light quark pairs have sig-

nificant effects, for example in screening the running

of the coupling constant and in generating Zweig-

allowed decay modes for unstable mesons.

Because quarks are fermions, they cannot be

simulated directly on the computer, but must be “in-

tegrated out” of the Feynman Path Integral. This

leaves a QCD Lagrangian in terms of gluon fields

which includes ln(det(M)) where M is an enormous

(107×107) sparse matrix. The inclusion of dynamical

quarks is then numerically very expensive, particu-

larly as the quark mass is reduced towards the small

values which we know the u and d quarks have.

Many calculations even today use the “quenched

approximation” in which the light quark pairs are ig-

nored. Results then suffer from a systematic error of

O(20%). A serious problem with the quenched ap-

proximation is the lack of internal consistency which

means that the results depend on the hadrons that

were used to fix the parameters of QCD. This ambi-

guity plagues the lattice literature.

Other calculations have included 2 flavors of de-

generate dynamical quarks, i.e. u and d, but with

masses 10-20× the physical ones. This approxima-

tion is better than the quenched approximation but

large uncertainties remain because the s quark is

omitted. Results must also be extrapolated to the

physical u/d quark mass and chiral perturbation the-

ory is a good tool for this. However, chiral perturba-

tion theory only works well if the u/d quark mass is

light enough and, for errors at the few percent level,
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this means less than ms/2. This has been impossible

to achieve in most calculations.

New results this year2 have included u, d and s

quarks in the vacuum, with light enough u/d masses

to perform accurate chiral extrapolations. The re-

sults use a new discretization of the quark action -

the numerically fast improved staggered formalism.

This formalism is well-matched to the supercomput-

ing power of a few Tflops that is currently achievable.

2.1. Improved Staggered Quarks

The starting point for the staggered quark formalism

is the näıve discretization of the Dirac quark action

onto a lattice. This action has good features: chi-

ral symmetry and discretization errors that appear

only as the square and higher powers of the lattice

spacing. The näıve discretization suffers from the no-

torious doubling problem, however. A single quark

species on the lattice gives rise to 16 quark species,

or tastes, on a 4-d lattice. The additional tastes ap-

pear around the edges of the Brilliouin zone, where

p ≈ π/a, as copies of a p ≈ 0 quark. This would not

be a problem if there were no interaction between the

different tastes since the quark action would then fall

apart into 16 different pieces in an appropriate ba-

sis and we could take det(M)(1/16) in simulations to

give the effect of 1 quark flavor.

There is interaction between the different tastes,

however. It is mediated by highly virtual gluons,

with momenta around π/a. A quark of one taste can

absorb or emit such a high momentum gluon and

turn into a quark of another taste. The effects of

this taste-changing interaction are quite severe for

the näıve action, giving rise to large discretization

errors (even though formally of O(a2)) and large per-

turbative renormalization factors, e.g. for the quark

mass, when translating from the lattice scheme to

the continuum. The degeneracy in mass of mesons

made from quarks of different taste is lost. This is

most noticeable for the pions because there is a light

Goldstone boson.

Because the taste-changing interaction is a high

momentum one it can be understood in lattice per-

turbation theory. In particular, the effects can be

significantly improved by suppressing the coupling of

quarks to gluons of momenta π/a in any direction.

This is achieved by “smearing” the gluon field in the

action in a particular way,3,4 and can be thought of

as part of the standard Symanzik program for sys-

tematically removing discretization errors from lat-

tice actions.

It is simple to “stagger” the näıve action and

its improved variant to remove an exact degeneracy

of a factor of 4 in tastes which arises from the spin

degree of freedom. This results in an action with 4

doublers which can be simulated on the lattice using

det(M)(1/4) per flavor. It is very fast numerically

because there is only one spin degree of freedom per

site and the eigenvalues ofM are well behaved. This

is what has allowed the MILC collaboration to gen-

erate ensembles of configurations which include u, d,

and s quarks in the vacuum with much more realistic

masses than before.5

Some worries remain about potential non-

locality in the action as the result of taking the

fourth root. However, this causes no problem in

perturbative QCD where a simple power series in

x is obtained for an action with det(M)x. Stringent

non-perturbative tests are also then needed. Luck-

ily these tests are possible in this formalism with

present day computers because of their speed, and

are exactly the calculations required to test (lattice)

QCD. The results, shown in the next section, speak

for themselves.

3. Recent Results

The MILC collaboration have made sets of ensem-

bles of gluon field configurations which include 2 de-

generate light dynamical quarks (u, d) and 1 heav-

ier one (s).5 Taking the u and d masses as the same

makes the lattice calculation much faster and leads to

negligible errors in isospin-averaged quantities. The

dynamical s quark mass is chosen to be approxi-

mately correct based on earlier studies (in fact the

subsequent analysis shows that it was slightly high

and further ensembles are now being made with a

lower value). The dynamical u and d quarks take a

range of masses, down as low as a sixth of the (real)

ms. The sets of ensembles divide into two different

values of the lattice spacing, 0.13 fm and 0.09 fm,

and the spatial lattice volume is (2.5 fm)3 reason-

ably large. Analysis of hadronic quantities on these

ensembles has been done by the MILC and HPQCD

collaborations.2

There are 5 bare parameters of QCD relevant to

this analysis: αs,mu/d,ms,mc and mb. The lattice
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the finite volume of our lattice (2.5 fm across). Unstable
, are constantly fluctuating

into on-shell or nearly on-shell decay products that can
easily propagate to the boundaries of the lattice; simi-
lar problems afflict multihadron states. Consequently we
focus here on hadrons that are at least 100MeV below

, Υ. . . );
and we restrict our attention to hadronic masses, and to
hadronic matrix elements that have at most one hadron
in the initial and final states. These are the “gold-plated”
calculations of LQCD— calculations that must work if

Unambiguous tests of LQCD are particularly impor-
tant with staggered quarks. These discretizations have

) cre-
ates four equivalent species or “tastes” of quark. “Taste”
is used to distinguish this property, a lattice artifact,

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

Figure 1. Lattice QCD results divided by experiment for a
range of “gold-plated” quantities which cover the full range of

hadronic physics.2 The unquenched calculations on the right
show agreement with experiment across the board, whereas

the quenched approximation on the left give systematic errors
of O(10-20%).

spacing takes the place of αs in lattice QCD. It is

important that these parameters are fixed using the

masses of “gold-plated” hadrons, i.e. hadrons which

are well below their strong decay thresholds. Such

hadrons are well-defined experimentally and theoret-

ically and should be accurately calculable in lattice

QCD. Using them to fix parameters will not then

introduce unnecessary additional systematic errors

into lattice results for other quantities. This has not

always been done in past lattice calculations, partic-

ularly in the quenched approximation. It becomes an

important issue when lattice QCD is to be used as a

precision calculational tool. We use the radial exci-

tation energy in the Υ system (i.e. the mass splitting

between the Υ′ and the Υ) to fix the lattice spacing

and mπ, mK , mDs
and mΥ to fix the quark masses.

We can then focus on the calculation of other

gold-plated masses and decay constants. If QCD

is correct and lattice QCD is to work it must re-

produce the experimental results for these quantities

precisely. Figure 1 shows that this indeed works for

the unquenched calculations with u, d and s quarks

in the vacuum. A range of gold-plated hadrons are

chosen which range from decay constants for light

hadrons through heavy-light masses to heavyonium.

This tests QCD in different regimes in which the

sources of systematic error are very different and

stresses the point that QCD predicts a huge range

of physics with a small set of parameters.

References6−9 give more details on the quanti-

ties shown in Fig. 1. Here we will discuss some of

these. Figure 2 shows the radial and orbital split-

tings in the bb (Υ) system for the quenched approxi-

mation (nf = 0) and with the dynamical MILC con-

figurations with 3 flavors of dynamical quarks. Our

physical understanding of the Υ system is very good

and there are a lot of gold-plated states well below

decay thresholds, which makes it a valuable system

for lattice QCD tests. We use the standard lattice

NRQCD effective theory for the valence b quarks,

which takes advantage of the non-relativistic nature

of the bound states. The lattice NRQCD action is

accurate through v4 where v is the velocity of the

b quark in its bound state. This means that spin-

independent splittings, such as radial and orbital

excitations, are simulated through next-to-leading-

order and should be accurate to ≈ 1%. Thus the

test of QCD using these splittings is a very accurate

one. The fine structure in the spectrum is only cor-

rect through leading-order at present and more work

must be done to bring this to the same level and al-

low tests against, for example, the splittings between

the different χb states.
7

The Υ system is a good one for looking at the

effects of dynamical quarks because we do not expect

it to be very sensitive to dynamical quark masses.

The momentum transfer inside an Υ is larger than

any of the u, d or smasses and so we expect the radial

and orbital splittings to simply “count” the number

of dynamical quarks once we have reasonably light

dynamical quark masses. The lower plot of Fig. 2

shows this to be true - the splittings are independent

of the dynamical u/d quark mass in the region we

are working in (and therefore for the points plotted

in the left-hand figure of Fig. 1 and in Fig. 2).

The π and K decay constants are important

light hadron matrix elements, related to the purely

leptonic decay rate via a W , and experimentally

well-known. These are very sensitive to light quark

masses and require a well-controlled extrapolation in

the u/d quark mass and interpolation in the s quark

mass to get accurate results to compare to experi-

ment. Chiral perturbation theory can be used to per-

form the u/d quark mass extrapolation provided the

masses used on the lattice are small enough for the

expansion in powers of quark mass (≡ m2π/(1GeV2))

and its logarithms to work well. In practice this

means that second-order chiral perturbation theory
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        3S-1S
       2P-1S

Figure 2. Radial and orbital splittings in the Υ system from

lattice QCD in the quenched approximation and including u, d

and s dynamical quarks. In this plot the lattice spacing was

fixed from the radial excitation energy, i.e. the splitting be-
tween the Υ′ and the Υ and the b quark mass was tuned to get

the Υ mass correct. The bottom plot shows these splittings

plotted as a function of the bare dynamical u/d quark mass

for several ensembles of MILC configurations. The leftmost

lattice points are the ones used in the top plot and in Fig. 1.

msea

u,d
=

{

ms/2.3
ms/4.5

fπ

fK

mval
u,d/ms

10.80.60.40.2

0.13

0.12

0.11

0.1

0.09

msea

u,d
=

{

ms/2.3
ms/4.5

fπ

fK

mval
u,d/ms

10.80.60.40.2

0.13

0.12

0.11

0.1

0.09

Figure 3. Results for the π and K decay constants as a func-

tion of the light quark mass for two dynamical MILC ensem-
bles at a lattice spacing of 0.09 fm. The top plot shows the
chiral extrapolation using only results with valence u/d quark
masses < ms/2.2 The chiral extrapolation must subsequently

be corrected for the incorrect valence and sea s quark mass
to give the results in Fig. 1. The bottom plot shows that this

chiral fit from light u/d quark masses does not agree well with

the data for mu/d > ms/2.
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should work at the 2% level for mu/d < ms/2. Note

that the error is set by the largest quark mass used

in the chiral fits, not the smallest.

Figure 3 shows the results and chiral extrap-

olation for the decay constants on the ensembles

of MILC configurations with msea
u/d = ms/2.3 and

ms/4.5 at a lattice spacing of 0.09 fm. The curves

in the top plot show the chiral extrapolation using

only results with mvalence
u/d < ms/2. This extrapo-

lation has to be corrected, using the lattice results,

to interpolate to the physical s quark mass for both

sea and valence s quarks. This then gives the re-

sults shown in Fig. 1 which agree with experiment.

The lower plot shows what happens when the chiral

extrapolation fit obtained in the top plot is evalu-

ated for larger valence mu/d. The fπ results start

to show clear disagreement for mu/d > ms/2, which

makes the problem of performing accurate chiral ex-

trapolations using results with mu/d > ms/2 obvi-

ous. Previous lattice calculations have been forced

by computing cost to work only in this regime, with

the added problem that the sea mu/d is also large.10

Another gold-plated hadron mass is that of the

nucleon. A full chiral extrapolation of the results for

this on the MILC configurations has not yet been

done. The upper plot of Fig. 4 shows very encour-

aging signs that an answer in agreement with ex-

periment will be found.6 There is a clear sign of

dependence on the lattice spacing, however, which

will have to be taken into account. Combinations of

baryon masses can be made which are relatively in-

sensitive to u/d quark masses and other effects, and

it is one of these, 3mΞ − mN , which is plotted in

Fig. 1.

It is important to realize that accurate lattice

QCD results are not going to be obtainable in the

near future for every hadronic quantity of interest.

What these results show is that “gold-plated” quanti-

ties should now work. Gold-plated hadrons are those

well below decay threshold for strong decays. Unsta-

ble hadrons, or even those within 100 MeV or so of

Zweig-allowed decay modes, have a strong coupling

to their real or virtual decay channel which is not cor-

rectly simulated on the lattice. The problem is that,

with the lattice volumes being used, the allowed non-

zero momenta are typically greater than 400 MeV

and this significantly distorts the decay channel con-

tribution. Much larger simulations will be necessary

to handle these hadrons.

Figure 4. The top plot shows results for the nucleon mass

on MILC ensembles for different lattice spacings and dynam-

ical quark masses. The nucleon mass is given in units of r1,

a parameter from the heavy quark potential whose physical

value is 0.32 fm. The dynamical quark mass is indicated by

the variable m2
π/m

2
ρ. The curve roughly indicates chiral per-

turbation theory.6 The bottom plot shows the spectrum of Ds

states obtained from the MILC dynamical configurations with

mu/d = ms/4 and lattice spacing 0.13 fm.11
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Gold-plated hadrons include: π, K, D, Ds, J/ψ,

Υ, B, Bs, p, n, Λ, Ω, etc.. The following are not gold-

plated: ρ, φ, D∗, DsJ , ∆, N∗, pentaquarks, glueballs

and hybrids in general. Lattice calculations will not

get the masses right for non-gold-plated hadrons even

when light dynamical quarks are included. This does

not preclude lattice calculations giving useful quali-

tative results and insight but these points should be

borne in mind for any quantitative comparison.

Figure 4 also shows the spectrum ofDs states ob-

tained on the dynamical MILC configurations.11 The

valence c quarks are simulated using an effective the-

ory which, in a similar way to the Υ above, should

be accurate for spin-independent splittings and not

quite so accurate for fine structure in the spectrum.

The hyperfine splitting between the Ds and D∗

s , for

example, is currently missing a radiative correction

to the term in the action proportional to the spin

coupling to the chromo-magnetic field. This is be-

ing calculated in lattice perturbation theory.1 Also

shown are the scalar and axial vector orbital excita-

tions compared to the recent experimental results for

these mesons. The lattice calculation is giving a high

result, albeit with large statistical errors at present.

However, a high result is consistent with the fact

that these mesons are not gold-plated and the lat-

tice calculation does not currently include correctly

the coupling to their decay modes.

Decay rates which can be accurately calculated

for gold-plated hadrons are those in which there is at

most one (gold-plated) hadron in the final state. This

therefore includes leptonic and semi-leptonic decays

and the mixing of neutral B and K mesons. Luckily

there is a gold-plated decay mode available to extract

each element (except Vtb) of the CKM matrix which

mixes quark flavors under the weak interactions in

the Standard Model:


























Vud Vus Vub

π → lν K → lν B → πlν

K → πlν

Vcd Vcs Vcb

D → lν Ds → lν B → Dlν

D → πlν D → Klν

Vtd Vts Vtb

〈Bd|Bd〉 〈Bs|Bs〉



























.

As described earlier, the determination of the CKM

elements and tests of the self-consistency of the CKM

matrix are the current focus for the search for beyond
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The gray points in Fig. 5 are preliminary results
from HPQCD [80] on the MILC ensembles, with
nf = 2 + 1 and r ≤ 0.8. Although the statistical
errors are still too large to get too excited, it is
striking how closely they track the chiral log curve
(which was fit to JLQCD only). Taking just the
smallest mass point one would conclude ξf & 1.2.

For the benefit of those interested in the CKM
fit, the rest of this section recommends values for
the mixing parameters. Let us start with the B
factors, whose chiral logs are small, because of the
facto 1 − 3g2 ≈ −0.05:

B̂Bs
= 1.31 ± 0.10, B̂Bd

= 1.26 ± 0.10, (39)

ξB = 1.022 ± 0.018, (40)

symmetrizing JLQCD’s error bars [78]. These
values are probably robust, because the bag fac-
tors seem to be insensitive to nf [57], and the
chiral uncertainty is a fraction of the total.

Recommendations for fBs
, fBd

, and ξ are less
straightforward. fBs

should be gold-plated [4,5],
but the comparison of JLQCD and HPQCD

fBs
= 215(9)(14) MeV (nf = 2) [78], (41)

fBs
= 260(7)(29) MeV (nf = 2 + 1) [80], (42)

is unsettling. The first error bar is statistical;
the comes from systematics, like matching, that

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r = m
q

val
/m

s

0.80

0.90

1.00

1.10

1.20

1.30

1.40

ξ
f

Figure 5. ξf vs. r unquenched. Open symbols
denote nf = 2 Wilson sea quarks [78]; solid gray
symbols denote nf = 2 + 1 improved staggered
sea quarks [80]. The solid line (dashed curve)
is JLQCD’s linear fit (a chiral log fit [16]) to
JLQCD’s data. Statistical errors only.

are partly in common. A further uncertainty in
the nf = 2 result comes from using the unstable
ρ meson to convert to MeV. Converting with Υ
splittings would increase fBs

, perhaps by 15%.
On the other hand, the nf = 2 + 1 result is still
preliminary. These issues can only be taken into
acount subjectively. My recommendation is

fBs
= 235 ± 35 MeV. (43)

To estimate ξ, I shall use the ratio Ξ =
ξfξBfπ/fK . The chiral log largely cancels be-
tween ξf and fπ/fK [81], and the sensitivity to
g2 partly cancels between ξf and ξB [16]. From
JLQCD’s data I obtain ξ = (fK/fπ)Ξ = 1.23 ±
0.06; HPQCD quotes (very preliminarily) 1.22–
1.34 [80], though most of the uncertainty here is
statistical. I shall quote round numbers

ξ = 1.25 ± 0.10 (44)

with the fervent hope that next year’s reviewer
can quote a smaller, yet robust, error bar.

7. SUMMARY AND PERSPECTIVE

Most of this review has covered methodology.
It may be dull, but I hope that this focus will
help us to meet the challenge of flavor physics.
The principal concerns—the quenched approxi-
mation, heavy-quark discretization effects, and
the chiral extrapolation—are easy enough to list.
Progress in unquenched calculations [4,5] says
that we must confront the other two problems.

Here, and elsewhere [24], I have argued that we
should attack both problems by separating scales
with effective field theories. This gives us a frame-
work that is theoretically sound, and familiar to
other theorists, and experimenters too. As long
as we are not naive in applying effective field the-
ories, we have good reason to believe that our
error bars will be robust and persuasive.

Finally, although it is clear that lattice QCD
is conceptually sound, let us remember that we
carry out numerical simulations. These are not
easy for outsiders (even other experts) to grasp
fully. It therefore always helps to have tests of the
whole apparatus. In the case of heavy quarks, a
good set of checks come from quarkonium, where
the spectrum and also many electromagnetic de-
cay amplitudes are well measured and (for us)

Figure 5. Results for the ratio of fBs
/fBd

, as a function of

valence u/d quark mass in units of ms.12 The (grey) squares
are from the dynamical MILC ensembles including u, d and s
dynamical quarks.13 The (black) diamonds are from the pre-
vious best calculation which included 2 flavors of dynamical
quarks with masses > ms/2.10 The straight line is a linear
extrapolation for the 2 flavor results, the curve includes the

possibility of logarithms from chiral perturbation theory. This
ratio, for physical u/d masses, appears in the ratio of oscilla-

tion frequencies for Bs and Bd mesons, which it is hoped to
measure experimentally.

the Standard Model physics and lattice calculations

of these decay rates will be a key factor in the preci-

sion with which this can be done.

The first calculations on the dynamical MILC

configurations have concentrated on the B and Bs

leptonic decay rates,13,11 because these are the sim-

plest. They are parameterized by the decay con-

stants, fB and fBs
, and these are an important com-

ponent of the mixing rate for these mesons, which

constrains Vts and Vtd. Again one issue in extract-

ing reliable lattice results for fB and fBs
is the chi-

ral extrapolation in the u/d quark mass. Figure 5

shows results on the MILC configurations for the ra-

tio of fBs
/fBd

plotted against the valence u/d quark

mass.12 The data extend into the region mu/d <

ms/2 which will allow an accurate chiral extrapo-

lation for the first time. Although the statistical er-

rors are currently rather large, it seems likely that

the result for this ratio will be larger than previous

estimates based on extrapolations from larger u/d

masses, and including only two flavors of dynamical

quarks.10 Further calculations of gold-plated matrix

elements are in progress.14
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4. Conclusions

The possibility of few percent errors in lattice QCD

simulations creates a superb opportunity for lattice

QCD to have an impact on particle physics. Lattice

QCD is essential to the high precision B/D physics

programs at BaBar, Belle, CLEO-c, Fermilab, . . . .

Predicting BaBar/Belle, and especially CLEO-c re-

sults at the few percent level will give much needed

credibility to lattice QCD. It is critical in such tests

and applications to focus on gold-plated quantities.

High precision non-perturbative QCD is a land-

mark in the history of quantum field theory, and it is

an essential first step in our preparation for strong-

coupling beyond the Standard Model.
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DISCUSSION

Jeff Appel (Fermilab): Congratulations on your

progress on masses and engineering numbers

needed for CKM measurements. The major

issues in QCD itself, however, lie in the area

you described as still hard after current suc-

cesses: e.g. light scalar mesons, glueballs, hy-

brids, and production processes. When might

we expect progress in these areas? Are the

new improvements enough or are yet newer tech-

niques needed?

Peter Lepage: It’s difficult. You can do some res-

onance work. There are techniques for low-

mass resonances so things like that ρ and the

φ can probably be nailed – we have the tech-

nology. Things like glueballs – which would be

really neat – are much, much harder and people

have really just scratched the surface in think-

ing about new ways of doing it. So I don’t know

what to promise there. The one thing I can say,

though, about things like glueballs is that in lat-

tice gauge theory, we really haven’t been sure

that it was working for anything up until very,

very recently. And when you’re not sure that

it’s working for anything, even simple things,

it’s really, really hard to devote a lot of time to

something like the glueball which you know is

much much harder, given that you’re not even

clear that it can get the nucleon mass right yet.

And, so at some level, getting a foundation that

is really, really solid and well-established – at

the couple of percent level where everyone agrees

that this is the real thing – is bound to improve

the odds for doing something non-trivial like fig-

uring out how to do a glueball decay width. I

can’t predict what it is, I’m just saying that

we’re in vastly better shape by virtue of hav-

ing gotten to first base. We have a much better

chance of getting to second base if we’ve already

made it to first base. And what we’re doing now

is trying to get to first base, and looking for

ways in which we can have a big impact. And

that’s why there’s a lot of focus on B physics,

because there we really can have a big impact

on the scientific program. This is not to say that

there’s nothing you can get from lattice gauge

theory. I mean, probably the most compelling
studies so far for things like glueballs come from

lattice gauge theory. And people have fooled

around with techniques for trying to estimate

decay widths and so on – even of glueballs. I

don’t know if those techniques are reliable or

not, but there are some ideas that you can try

out. And if we can sort of pin down the rest of

the territory then it makes it more likely that

we’ll be able to figure our way out of that prob-

lem. So I’m not being too encouraging, but I

think we’re in much better shape even for the

harder problems.

Enrico Predazzi (INFN, Turin): When you men-

tioned in the beginning that the old lattice did

not really represent QCD, you mentioned that

that was, among other things, because of not

incorporating quark loops. Now, in the new lat-

tice, you have sea quarks but you have no actual

gluons or anything of the kind.

Peter Lepage: No, we have gluons.

Enrico Predazzi (INFN, Turin): How does that

come in?

Peter Lepage: Basically, we’re evaluating the path

integral of QCD numerically so we’re integrat-

ing over all values of the gluon field. I should be

clear for people who don’t know lattice QCD.

What it is is taking the path integral of the

quantum field theory – literally the thing you

read in a textbook – and evaluating that integral

numerically. It’s a numerical approximation to

that integral. It’s a very hard integral to do, and

it’s taken us a while to figure out how to do it

effectively, but it is just the path integral that’s

the input. That’s what the computer program is

munching on. When I say bare quark mass and

bare coupling as the inputs, those are literally

the things that appear in the Lagrangian. We’re

working with the real thing here. I showed you

upsilon spectra – it’s not a quark model with a

potential – there are only 5 numbers that went

into all the data I showed you, and those are

those masses and the bare thing and the rest of

it is a numerical path integral.
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Alberto Sirlin (New York University): One calcu-

lation that would be very interesting for the

problem of universality is the calculation of

f+(0) in the K`3 decays – the form factor. It

seems to fall into the category of your gold-

plated...could that be possible? That would be

very important.

Peter Lepage: Yes. There’s a big experimental

community in B and D physics, but we know

that there’s also some really interesting stuff in

kaon physics. So we’re aware of it. Whether it

gets done this year or next year is another ques-

tion. It might actually be useful to talk a little

bit – maybe you should visit Cornell?


