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Breakthrough?
Before (for 25 years):

® Realistic u/d/s vacuum polarization impossible — smallrgunasses
too expensive.

= Omit quark loops (“quenched QCD”) or include onlyd quarks
(no s) but with masses 10-20 too large.

= 10-30% systematic errors in almost all lattice QCD results.

Now (since 2000).

® New discretization of quark action that is 50-1000 timesefas

= Simulations withu, d, s quarks possible, with masses that are
3-5x smaller than before.

= Masses small enough to allow accurate extrapolations.
= High-precision (few %) nonperturbative QCD now!

High-Precision Lattice QCDand Experiment — p.2/27



Essential for Standard M odel

E.g., CKM weak interaction parameters
p andn from:

B-B mixing
B — wlv

K-K mixing

Nonpert've QCD Park Weak Int'n Part
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CKM today... ... and with 2—3% theory errors.
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95% confidence levels; CLEO-c (2001).
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Essential Beyond the S.M.?

2 of 3 known interactions are strongly coupled: QCD, gravity

Strong coupling is possible (likely?) at the LHC and/or bayo
® Generic at low energies in non-abelian gauge theories. ..

® ... unless gauge symmetry spontaneously broken
= dynamical symmetry breaking
= strong coupling!
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Symanzik-Improved Staggered Quarks

* Staggered gquarks improved discretization.
* Chiral symmetry=- efficient for small quark masses.

* Complication:single quark field/(x) creates 4 equivalent

species or “tastes” of quark.
= det(D -~ +m) — det(D - v+ m)/4
= Potential non-locality.

* But:

¢ Fractional roots cause no problem in perturbative QCD.
¢ Anomaly-induced behavior (e.gt’ — ~v), instantons. .. okay.

¢ Core problem is taste-changing interactions, but these are

short-distance and perturbative.

* Careful testing essential!
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High-Precision Test

1) Tune 5 free parameters (barg =my, ms, m., my anday)
usingmy, mg, My, my, andAEy (1P — 1.5).

2) Compute other quantities and compare with experiment.

Davies et al, hep-lat/0304004. (HPQCD, MILC, Fermilab, UBQ)
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Lattice QCD/Experimenfno free parameters!)

Before Now
ol o Tests:
i_._ e Z{ _:l:_ — My, 4 extrapolation;
i o 3M= — My J:._ — masses ar.1d |
. oMy, — My . wavefunctions;
_._i W(1P —18) _I+_ — s quark;
_,_i Y(1D — 18) _E,_ — light-quark baryons;
To- T(2P — 15) o — light-heavy mesons;
i - (35 —15) i—o— — heavy quarks (no
. | T(1P —185) 4 potential model. . .);
L1 L1 — improved staggered quark

09 1 1.1 09 1 1.1 vacuum polarization.
LQCD/Exp’t (ny = 0) LQCD/Exp’t (ny = 3)
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Quark Mass Problem

Too expensive to simulate at realistic, ;.

= Simulate for range of largen,, ; and extrapolate using
chiral perturbation theory.

= E.g.,
fﬂ' — fO (1 —|—CL0£C7TIOg(ZC7T) + a1 X, —|—bgj72T 4 .. )

wherea,b. . .areO(1) (fit to simulation) and

L

0.06-0.25 In new simulations

ms; My [ 0.02 for real quarks
1GeV?  2my,

= [ Keepm, 4 < ms/2 for high-precision!]
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fr and f fits versus valence, d mass:

0.13 |~ —

0.12 1= / a Note:

0.11 * P — fx more sensitive.
' — More sensitive to valence
mass than sea mass (***).
0.1 - mie,?i - mg /4.5 -

— Extrapolation correct to
within +£2% errors.
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fr and fx fits extrapolated to larger masses:

| | | | N
0.13 :
0.12 =
0.11 /&
0.1} meea, — { me/%
0.09 /=

| | | |

02 04 0.6 0.8

myey /ms

Note:
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Masses> m /2 bad.
High-massfs lineatr;
extrapolate 10% high.

Lowest two frS extrapo-
late linearly to within 2%.



Best f. analysis without staggered quarks:

© unquenched lattice data

65 E_ — linear + quadratic Note:
s I — Only masse® ms /2.
\N‘U: 0.6~ — \ery straight line;
":2 i - unexpected, but real physics.

——— 1 =300 MeV — +£10% extrapolation errors
74 — 1 =500 MeV despite 0.5% data errors.
0.4y —— 1= o (chiral log + quad) |
- | | | — Nos quarkin sear® ; = 2).
0.0 2.0 4.0 6.0
2
(romy)

Aoki et al., hep-ph/307039 (JLQCD Collaboration)
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Nucleon mass versus light-quark mass:

3.0

2.9

Note:

More sensitive thaif ;.

Finitea errors~ 2% for
a = 0.09 fm.

Full analysis not complete.

Steve Gottlieb’s talk at Lattice '03, July 2003 (MILC Collatation).
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Gold-Plated Quantities

Lattice QCD can’t do everything (yet).

® Unstable hadrons strongly affected by finite lattice voly&&—-3 fm
across): e.g#s in fluctuationp — mw — p can be on-shell and
propagate freely to lattice boundaries.

®* Hadrons near decay thresholds, even if stable, fluctuadengdrly
on-shell multi-hadron states that again can propagatestbdlindaries:
e.g., phase space implienearly stable, but phase space doesn’t limit
virtual fluctuationsgp — KK — ¢.

® Euclidean time=- phases in multihadron states subitle.

= Systematic errors of 10% or more (estimate using effecteld theory)

even with good light-quark masses.
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<
Important to focus theoretical and experimental effort gold-

plated” quantities:
* hadronic masses, and matrix elements with at most one
hadron in initial and/or final states:

* hadrons at least 100 MeV below threshold or with negligible
couplings to decay channels (e, K, D, D,, J/1...).
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Dozens of gold-plated quantities: e.g.,

* Masses, form factors, decay constants, mixing amplitudes
for =, K, p, n (butnotp, ¢, A...).

* Masses, decay constants, semileptonic form factors, and
mixing for D, D, B, B, (butnot D*...).

* Masses, leptonic widths, electromagnetic form factord, an
mixing for any meson iny andY families well belowD /B

threshold.
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* Gold-plated quantities for almost every CKM matrix
elements (and(-K mixing):

[ Vi Vs
™ — v K — v
K — wlv
Ved Ves
D—lv Dg—lv
D—mwlv D— Klv
Vid Vis
\ (BBs) (BB

Vub \

B — wlv

Veb
B — Dlv

Vi

* Extensive cross-checks for error calibratigh. B, ¢, D. ...
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Limitations for Gold-Plated Processes

Systematic errors:

* Finite lattice spacing errors of order 2% or less at
a < 0.1fm; improved discretizations essential.

* Finite volume errors of order 1-3% (for gold-plated
guantities!).
< In principle, remove using chiral perturbation theory;remt

volumes probably too small.
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* Perturbative (or nonperturbative) matching essential to
connect lattice gquantities to continuum.

© E.g., forfp use
Jcont =7 Jlatt + 0,2AJ

where
Z =1+cias(n/a)+caa’(n/a) + -

anda, =~ 0.25 for currentas (= need 2nd order for few %
errors).

© (Super) Computer automation is essential (e.g., 3-loop
calculations by Mason and Trottier with improved actions).

¢ Usually the dominant error.
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Sampler of Recent Calculations

T Spectrum
CoV 0 Note:
105 — Direct from QCD path
%3 @ integral; no potential
77777 - 2P
“ e o 1D model. ...
7YY —— o 99 — Tests/tunes quark action
o e 1P for use inB physics=-
overconstrained.
— Other tests: leptonic widths,
9.5+ oo 1S photon transitions, fine
structure.
381 1P1 31)2

— Statistical and systematic er-

-~ Experiment rors of 2—3%: 1S and 1P used
O : Quenched MILC . )
in tuning.

e : 2+1 flavors MILC with m,, 4 = m/5.

Davies, Gray et al. (HPQCD, 2002).
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T Fine Structure

MeV MeV
20 * 20+
-5t Xb2 3
b - X 3D3 i
0+ ———e- D 4+ —o-e —o--e Y/ ———e- PB*
————‘F X X3 2 O__ T T s
—20+ , —20+ + +
$ T Xio M
—40+ ————* Xb0 _404+ o }
i ° o e BS
—60+ —60-+
---: Experiment ---: Experiment
o 1 Quenched o : Quenched
o 241 flavours MILC with m,, 4 = ms/5. o 241 flavours MILC with m, 4 = m,/5.

Note: 20—-30% systematic error due to use of tree-levelpénory.

Davies, Gray et al. (HPQCD, 2002).
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T Splittings: Insensitive ta, d Mass

Energy Splitting (Gev)

1.6

1.4

1.2

0.8

0.6

0.4

Davies, Gray et al. (HPQCD, 2002).
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J /1 Spectrum

i Charmonium |
- T _
500 — —
= — -
= i _0 |
- i |
o))}
N | _
()
o
S i |
0— o —
. 0 |
B MNe J/\P hc Xco Xei Xe2 N

A. Kronfeld’s talk at Lattice ‘03 (Fermilab CollaboratioB003).
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by = fy. /My, Versusl /my.

0.8

0.2

M. Wingate’s talk at Lattice ‘03 (HPQCD, 2003).

augm_, = 0.04, m¥P/mi*®=1/5

2

0.2

0.4
1/my (GeV™')

0.6

Implies:
fB, = 262=x28 MeV
fp, = 289 x41 MeV

where dominant error is due to use of
1st-order perturbation theory (***).
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D, Spectrum: Firsty = 3 Results

370 (27) MeV  Fermilab collaboration
D,(07) — Dy(07) = { 360400 MeV HPQCD collaboration
350 MeV Experiment

D.(1*) = D,(17) = 388 (20) MeV  Fermilab collaboration
) ’ | 351 MeV Experiment

But D,(0*,17) close to threshold

= not gold-plated
= lattice results should be 5-15% high

= 01, 1" are likelycs P-states.

Lattice QCD results: P. Mackenzie and C. Davies. See alsddgaret al, hep-ph/0305049.

High-Precision Lattice QCDand Experiment — p.25/27



Not Covering...

* New 3-loop accurate determination@f5(Mz) fromn, = 3 lattice
QCD (Mason, Trottier et al, HPQCD 2003).

® Preliminary studies of semileptonic form factors #8s andDs with
nr = 3 and small quark masses; moving NRQCD for high-recoil.
(Fermilab and HPQCD collaborations)

® Quenched and only somewhat unquenched calculations &f Vagety
of quantities in heavy-quark physics, QCD thermodynanneasironic
physics. Technology well developed; needs= 3 and small
light-quark masses. (See earlier reviews.)

®* Domain-wall and GW fermion algorithms — potentially veryportant

In long-term.
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Conclusion

Few percent precision- superb opportunity for lattice QCD to
have an impact on particle physics.

* LQCD essential to high-precisiai/ D physics at BaBar,
Belle, CLEO-c, Fermilab. ..

* Predicting CLEO-c, BaBar/Belle results> much needed
credibility for LQCD.

* Critical to focus on gold-plated quantities.

* Landmark in history quantum field theory: quantitative
verification of nonperturbative technology (c.f., 1950s).

* Ready for beyond the Standard Model, strong coupling
beyond QCD?
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