Relativistic Heavy-Ion Collisions: Recent Results from RHIC

David Hardtke LBNL

Outline

- Why do we study high energy nucleus-nucleus collisions?
- Experimental Results from RHIC
 - Particle Multiplicities
 - "High" p_T phenomena and "jet quenching"
- Conclusions

Relativistic Heavy Ion Collider

$p\uparrow +p\uparrow$ to Au+Au, $\sqrt{s} = 20 - 200$ (Au+Au) - 500 (p+p) GeV/c

Today: p+p, d+Au, and Au+Au

Lepton-Photon 2003

David Hardtke - LBNL

The Experiments

"Colorful" properties of QCD

- Running Coupling Constant ⇒
 "Asymptotic Freedom"

 Perturbation theory works or well at large momentum transfer (large Q²)
 Small Q² ⇒ or the second second
 - No free quarks

New path to weak coupling limit of QCD:

0

High Density or Temperature

David Hardtke - LBNL

'em

10²

μ GeV

Heavy-Ion Physics: The essential questions

- At high temperature, does nuclear matter undergo a phase transition?
- What are the properties of the deconfined phase?
 - quark mass : constituent mass ($\approx 300 \text{ MeV}$) \rightarrow current mass (few MeV) ?

What's new with RHIC?

- Quark and gluon degrees of freedom shown to be important elsewhere:
 - "Evidence for Hadronic Deconfinement in pbar-p collisions at 1.8 TeV", E735 Collaboration, PLB (2002)
 - "New State of Matter Created at CERN", CERN Press Release
 (2000)
 Shvarsburg and Jarrold, PRL 85
- RHIC \rightarrow *bulk limit ?*
 - Thermodynamics of small systems difficult to understand
 - i.e. Tin nanoclusters

Log (Radius/Angstrom)

FIG. 2. Melting points of tin clusters as functions of the average cluster radius. \bullet Lai *et al.* [22] and \blacksquare Bottani *et al.* [23] for mesoscopic tin particles, and \bigcirc this work for clusters with 19–31 atoms.

Lepton-Photon 2003

David Hardtke - LBNL

Geometry of Heavy Ion Collisions

Non-central Collisions

Number of participants: number of incoming nucleons (participants) in the overlap region Number of binary collisions: number of equivalent inelastic nucleonnucleon collisions Lepton-Photon 2003 David Hardtke - LBNL 10

Total Multiplicity

- Multiplicity \propto Entropy
- *Ideal* Quark-Gluon Plasma should have high entropy density
 - quark and gluon vs. hadronic degrees of freedom

Can we see extra entropy production reflected in the particle multiplicity?

- Coherent nuclear phenomena may *reduce* total multiplicity
 - Shadowing of parton distributions
 - "Saturation" of nuclear gluon distributions

$dN/d\eta$ per participant ($\sqrt{s} = 200 \text{ GeV}$)

David Hardtke - LBNL

Total Multiplicity vs. \sqrt{s}

Why is p+p different? Leading particle effect?

Basile et al., 1980

Universal Particle Production

• Simple relation between e+e- and AA collisions:

$$N_{ch}^{AA} = N_{ch}^{e^+e^-} \left(\sqrt{s}\right) \times \frac{N_{part}}{2}$$

- (Any) excess entropy created in heavy-ion collisions *not* reflected in total multiplicity
- Will this relationship hold true at LHC?
 - Deeper into nuclear shadowing region of Bjorken x
- A mystery: Why is the total multiplicity unaffected by the complex dynamical evolution of a heavy-ion collision?

Jets in heavy-ion collisions

- Partons lose energy due to induced gluon radiation: "Jet Quenching"
 - Energy loss is measure of gluon density ⇒ Indirect QGP signature
 Nuclear Medium 1

Probe energy loss via leading hadrons and di-hadron correlations

Energy Loss of Scattered Partons in Dense Matter

• elastic scattering of partons $dE/dx \sim 0.1 \text{ GeV/fm}$

Lepton-Photon 2003

David Hardtke - LBNL

Mid-rapidity spectra

Nuclear Modification Factor R_{AA}

- Yield (p_T) in Au+Au and p+p collisions
- Number of binary collisions from Glauber

Nuclear effects in pA collisions $\sigma_{pA} = A^{\alpha} \sigma_{pp}$ α(pt) π Frisch et al. 200 GeV π^{-} beam π Cronin et al. 1.2 400 GeV p beam π Garbutt et al. π^+ 250 GeV p beam High p_T: π^0 E706, 515 GeV π beam h⁻ Chaney et al., 200 to 400 GeV n beam multiple scattering 1 $\alpha > 1$ "Cronin Effect" 0.8 10 ⁻¹ 10 p, (GeV/c) Low p_T : Coherent interactions and shadowing $\Rightarrow \alpha < 1$ Lepton-Photon 2003 David Hardtke - LBNL 20

d+Au results from RHIC

Expected "Cronin" enhancement observed by all four RHIC experiments in d+Au collisions

Lepton-Photon 2003

Flavor Dependence of Suppression

'n

Baryons show binary collision scaling at intermediate p_T (2-4 GeV/c):

- •Novel production mechanism? Quark Coalescence: q+q+q → baryon
- •Re-discovery of flavor dependence of

Transverse Momentum p_{T} (GeV/c)

Jets in p+p collisions at RHIC

Two-particle azimuthal correlations:

 $p+p \rightarrow dijet$

Lepton-Photon 2003

•p+p events with high p_T track (*maximally* biased jet finder)

• $\Delta \phi$ distribution of other tracks (p_T>2 GeV/c) in these events

•normalize to the # triggers ...

Jets in d+Au using $\Delta \phi$ correlations

•Similar near-angle and back-to-back correlations

•Increased "pedestal" from multiple interactions

Lepton-Photon 2003

David Hardtke - LBNL

Jets in Au+Au collisions at RHIC

High p_T particle production (a) RHIC

- Suppression of inclusives compared to binary collision scaling
- High p_T charged hadrons dominated by jet fragments
- Suppression of back-toback correlations in most central Au+Au collisions

Theory Calculations $dE/dx|_{t=0} = 7 \text{ GeV/fm}$ $\rho_{t=0} \ge 30 \rho_{nucleus}$

Conclusions

- *Qualitatively* new physics in Au+Au collisions at RHIC:
 - Total multiplicity: $Au+Au \approx e^+e^-$ after accounting for geometry
 - Suppression of high p_T particle production
 - "monojets"
- High p_T Au+Au data consistent with "Jet Quenching" scenario
 - High gluon density: $\rho_{t=0} \ge 30 \rho_{nucleus}$
 - Medium opaque to fast partons
- Essential question: Have we seen the Quark-Gluon Plasma at RHIC?
 - Density and temperature of system at or above predicted phase transition temperature, but ...
 - No direct evidence for excess entropy production