Top Quark Measurements at the Fermilab Tevatron

Patrizia Azzi

Introduction

- Top quark was expected in the Standard Model (SM) of electroweak interactions as a partner of b-quark in SU(2) doublet of weak isospin for the third family of quarks
 - \Rightarrow Evidence for top in 1994 (CDF)
 - \Rightarrow Observation in 1995 (CDF&D0)
- $\odot~$ In Run I statistical uncertainties dominated:
 - \Rightarrow Overall consistency with the SM picture
 - \Rightarrow but...still a few loose ends
- $\odot~$ In anticipation of much increased statistics in Run II:
 - \Rightarrow Rich physics menu
 - \Rightarrow Increased luminosity \rightarrow increased precision
 - Surprises?

o Preliminary results on: cross section, mass, W helicity and single top Tevatron has exclusivity on top physics for the next several years!

Tevatron collider in Run II

 ⊙ The Tevatron is a proton-antiproton collider with 980 GeV/beam

$\sqrt{s} = 1.96$ TeV in RunII (1.8TeV RunI)

- Solution Setween bunches →396 ns
 Solution between bunch crossing
 - Increased from 6x6 bunches with 3.5μs in Run I

Increased instantaneous luminosity:
 Run II goal 30 x 10³¹ cm⁻² s⁻¹
 Current: 3÷4.5 x 10³¹ cm⁻² s⁻¹

Run II Data Taking Status

Collider Run IIA Integrated Luminosity

- \odot L_{int}~300 pb⁻¹ delivered by the Tevatron
- \odot Good quality data since Spring 2002
- ⊙ Data collection efficiency $85 \div 90\%$

Patrizia Azzi – Lepton-Photon, August 11 2003

Next Year projection: additional 310÷380pb⁻¹ delivered

lstituto Nazionale di Fisica Nucleare

Tevatron Collaborations

12 countries, 62 institutions 767 physicist

Top physics understanding

Patrizia Azzi – Lepton-Photon, August 11 2003

Program

- •Top production & decay
- •Tools
- •Cross section
- •Single top
- •W helicity
- •Mass

Top Quarks at the Tevatron

Methodology & tools

Full characterization of the chosen final state signature in terms of SM background processes (control region)

 \Rightarrow Optimize signal region for best measurement precision

- \odot How to separate signal from background:
 - \Rightarrow Top events have very distinctive signatures
 - o Decay products (leptons, neutrinos, jets) have large $p_{\! T}{}^\prime\!s$
 - o Event topology: central and spherical
 - o Heavy flavor content: always 2 b jets in the final state!
- Tools (need multipurpose detectors!):
 - \Rightarrow Lepton ID: detector coverage and robust tracking
 - \Rightarrow Calorimetry: hermetic and well calibrated
 - \Rightarrow B identification: algorithms pure and efficient
 - \Rightarrow Simulation: essential to reach precision goals

The upgraded detectors

D0

Wall Calorimeter (H) Plug Calorimeter (E,H) Forward Muon Forward Calorimeter (E) Luminosity Monitor Intermediate Silicon Vertex Detector Intermediate Silicon

CDF

Central Muon

Central Calorimeter (E/H)

New tracking: silicon and fibers in magnetic field
Upgraded muon system
Upgraded DAQ/trigger (displaced track soon)

- •New bigger silicon, new drift chamber
- •Upgraded calorimeter, $\boldsymbol{\mu}$
- •Upgraded DAQ/trigger, esp. displaced-track trigger

The new Silicon detectors

Common features:

Coverage of the luminous regions
Extended acceptance at large pseudo-rapidity
3D Tracking capability
Excellent I.P. resolution

10

How to tag a high p_T B-jet

Silicon Vertex Tag

Signature of a b decay is a displaced vertex:

- ⇒ Long lifetime of b hadrons ($c\tau \sim 450 \ \mu m$)+ boost
- \Rightarrow B hadrons travel L_{xy}~3mm before decay with large charged track multiplicity

Patrizia Azzi – Lepton-Photon, August 11 2003

- $b \rightarrow \ell \nu c \ (BR \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \; (BR \sim 20\%)$

Soft Lepton Tag

- ⊙ Exploits the b quarks semi-leptonic decays
 - \Rightarrow These leptons have a softer p_T spectrum than W/Z leptons
 - \Rightarrow They are less isolated

B-tagging at hadron machines established:
•crucial for top discovery in RunI
•essential for RunII physics program

lstituto Nazionale di Fisica Nucleare

Production cross section

⊙ <u>Test of QCD</u>

- ⇒ discrepancies from QCD might imply non SM physics
 - o SUSY processes
 - o Top-color objects
- ⇒ Current uncertainty is statistics dominated
- ⊙ Experimental handles for RunII:
 - ⇒ Larger overall efficiency (lepton ID, trigger, btagging) w/ better background rejection
 - ⇒ Main data driven systematics (jet energy scale, ISR, ε_{btag}) scale with $1/\sqrt{N}$

RunII(2fb⁻¹) δσ_{**H**}/σ_{**H**} ≈10%

Test of OCD

Double b-tagged dilepton event @ CDF

Run II cross section – lepton+jets

INFN Istituto Nazionale di Fisica Nucleare

μ +jets double tagged event @D0

Run II cross section summary

DØ Dileptons 90-107 pb⁻¹ CDF Dileptons 126 pb⁻¹ CDF L+Track 126 pb⁻¹

 $D \oslash L+jets/CSIP 45 pb^{-1}$ $D \oslash L+jets/SVT 45 pb^{-1}$ $D \oslash L+jets/topo 92 pb^{-1}$ $D \oslash L+jets/soft muon 92 pb^{-1}$ $D \oslash L+jets combined 92 pb^{-1}$ $CDF L+jets/SVX 57 pb^{-1}$ $CDF L+jets/HT 126 pb^{-1}$

 $D \varnothing$ Combined 90-107 pb⁻¹

 $8.7_{-4.7}^{+6.4}(\text{stat})_{-2.0}^{+2.7}(\text{syst}) \pm 0.9(\text{lum})$ 7.6_{-3.1}^{+3.8}(\text{stat})_{-1.9}^{+1.5}(\text{syst}) 7.3 \pm 3.4(\text{stat}) \pm 1.7(\text{syst})

 $7.4_{-3.6}^{+4.4} (stat)_{-1.8}^{+2.1} (syst) \pm 0.7 (lum)$ $10.8_{-4.0}^{+4.9} (stat)_{-2.0}^{+2.1} (syst) \pm 1.1 (lum)$ $4.6_{-2.7}^{+3.1} (stat)_{-2.0}^{+2.1} (syst) \pm 0.5 (lum)$ $11.4_{-3.5}^{+4.1} (stat)_{-1.8}^{+2.0} (syst) \pm 1.1 (lum)$ $8.0_{-2.1}^{+2.4} (stat)_{-1.5}^{+1.7} (syst) \pm 0.8 (lum)$ $5.3 \pm 1.9 (stat) \pm 0.9 (syst)$ $5.1 \pm 1.8 (stat) \pm 2.1 (syst)$

 $8.1^{+2.2}_{-2.0}(\text{stat})^{+1.6}_{-1.4}(\text{syst}) \pm 0.8(\text{lum})$

li Fisica Nuclear

Patrizia Azzi – Lepton-Photon, August 11 2003

First Run II look at the all jets channel

- Challenging signature: very low S/B!
 - \rightarrow cross section & mass measured in RunI (CDF,D0)
- Best tools needed:

kinematical quantities, neural networks, b-tagging algorithmsCurrently considered very difficult/impossible at LHC...

lstituto Nazionale di Fisica Nucleare

Test for new physics in tt production

Model independent search for a narrow resonance $X \rightarrow tt$ exclude a narrow, leptophobic X boson with $m_x < 560 \text{ GeV/c}^2 \text{ (CDF)}$ and $m_x < 585 \text{ GeV/c}^2 \text{ (D0)}$

Patrizia Azzi – Lepton-Photon, August 11 2003

lstituto Nazionale di Fisica Nucleare

Single Top Physics

○ Production cross section about _ of tt

- \Rightarrow Same signature as SM Higgs associated production:
 - o W+2 jets bin!
- \Rightarrow Single top samples have less objects in the final state:
 - o larger background

Patrizia Azzi – Lepton-Photon, August 11 2003

 $\overline{q'}$ (a) (a) W (b) (b) (c) $\overline{q'}$ (c) \overline{b}

 W^*

Uncertainty	2fb ⁻¹
^{δσ} (tbX)	26%
δΓ (t→Wb)	28%
$\delta V_{tb} $	14%

Istituto Nazionale di Fisica Nucleare

Search for Single top in Run II

- Main measurements: production cross section(s) → V_{tb} , mass:
 - ⇒ Two production modes, different sensitivities to new physics:
 - t-channel:anomalous couplings, FCNC
 - s-channel: new charged gauge bosons
- ⊙ In Run I a separate search (CDF,D0) and combined (CDF) have been performed
 - Same method is applied in RunII for these preliminary results:

 σ_{t} (t-channel)<15.4pb @95% C.L.

σ_t(combined)<17.5pb @95% C.L.

W helicity in top decays

- Top Mass is LARGE: top is produced and decays free:
 - \Rightarrow The helicity information is preserved and reflected in several kinematical quantities (W lepton p_T or M(lb))
 - \Rightarrow F₀ is naturally included in the ME calculation (SM prediction: F₀=0.70):
 - New Run I measurement from D0 with better statistical power:

 $F_0 = 0.56 \pm 0.31(stat) \pm 0.04(syst)$

Patrizia Azzi – Lepton-Photon, August 11 2003

Top Mass

- Top Mass: Fundamental SM parameter
 - \Rightarrow needed to determine ttH coupling
 - ⇒ important in radiative corrections: constrain $\Delta M_h/M_h$ to 35% in RunII
- \odot Experimental handles:
 - ⇒ B tagging: reduce background & combinatorial ⇒ Data driven systematics scale with $1/\sqrt{N}$ (energy scale, gluon radiation)

Top Mass Measurement

Handles for a precision measurement

A precise measurement of the top mass combines cutting edge theoretical knowledge with state of the art detector calibration

⊙ <u>Jet energy scale</u>

- \Rightarrow gamma-jet balancing: basic in situ calibration tool
- \Rightarrow Z+jet balancing: interesting with large statistics
- \Rightarrow Hadronic W mass: calibration tool in tt double tagged events
- \Rightarrow Z \rightarrow bb mass: calibration line for b-jets, dedicated trigger
- Theory/MC Generators: understand ISR/FSR, PDF's
- <u>Simulation:</u> accurate detector modeling
- Fit methodology: how to optimally use event information
- Event selection: large statistic will allow to pick best measured events

First look at top mass in Run II

Conclusions

- \odot Top quark existence established at the Tevatron in 1995
- Several top properties studied using Run I data \Rightarrow limited statistic
- \odot The Tevatron is the top quark factory until LHC:
 - \Rightarrow Run II ~50 times Run I statistics \rightarrow precision measurements
 - \Rightarrow Constraints on the SM Higgs boson mass and SM consistency
 - \Rightarrow ... or surprises?
 - \Rightarrow First Run II results cover a variety of channels and topics
 - \Rightarrow CDF and D0 are exploiting their upgraded detector features

A very rich top physics program is underway: let's see what the top quark can do for us!

to be continued...

Patrizia Azzi – Lepton-Photon, August 11 2003

Istituto Nazionale di Fisica Nucleare