

Grid Introduction and Overview

Ian Foster

Argonne National Lab University of Chicago Globus Project

www.mcs.anl.gov/~foster

Image Credit: Electronic Visualization Lab, UIC

Breaking News, August 14, 2003

BLACKOUT

Outage hits cities from NYC to Detroit

- New York City, Cleveland, Detroit, Toronto, Ottawa, other cities affected
- New York official: Outage result of electrical overload, not terrorism.
- Niagara Mohawk power grid believed to be affected
- Ground stops ordered for airports in New York and Toronto because of outages for security screening

DEVELOPING STORY

CNNRadio: Live coverage of power outage ►LIVE NOW

Breaking News, August 14, 2013

BLACKOUT

Outage hits cities from NYC to Detroit

- New York City, Cleveland, Detroit, Toronto, Ottawa, other cities affected
- New York official: Outage computational overload, not terrorism.
- Niagara Mohawk data grid believed to be affected.
- Ground stops ordered for airports in New York and Toronto because of outages for security screening

DEVELOPING STORY

CNNRadio: Live coverage of data outage ►LIVE NOW

The globus project It's Easy to Forget How Different 2003 is From 1993

- Enormous quantities of data: Petabytes
 - For an increasing number of communities, gating step is not collection but analysis
- Ubiquitous Internet: 100+ million hosts
 - Collaboration & resource sharing the norm
- Ultra-high-speed networks: 10+ Gb/s
 - Global optical networks
- Huge quantities of computing: 100+ Top/s
 - Moore's law gives us all supercomputers

Global Knowledge Communities

- Teams organized around common goals
 - Communities: "Virtual organizations"
- With diverse membership & capabilities
 - Heterogeneity is a strength not a weakness
- And geographic and political distribution
 - No location/organization possesses all required skills and resources
- Must adapt as a function of the situation
 - Adjust membership, reallocate responsibilities, renegotiate resources

Resource Integration as a Fundamental Challenge

Address Key Requirements

- Infrastructure ("middleware") for establishing, managing, and evolving multiorganizational federations
 - Dynamic, autonomous, domain independent
 - On-demand, ubiquitous access to computing, data, and services
- Mechanisms for creating and managing workflow within such federations
 - New capabilities constructed dynamically and transparently from distributed services
 - Service-oriented, virtualization

The globus project The Grid World: Current Status

- Substantial number of Grid success stories
 - Major projects in science
 - Emerging infrastructure deployments
 - Growing number of commercial deployments
- Open source Globus Toolkit® a de facto standard for major protocols & services
 - Simple protocols & APIs for authentication, discovery, access, etc.: infrastructure
 - Large user and developer base
 - Multiple commercial support providers
- Global Grid Forum: community & standards
- Emerging Open Grid Services Architecture

Increased functionality,

the globus project"
www.globus.org

The Emergence of Open Grid Standards

the globus project Grid Evolution: OGSA (Open Grid Services Architecture)

Goals

- Refactor Globus protocol suite to enable common base and expose key capabilities
- Service orientation to virtualize resources and unify resources/services/information
- Embrace key Web services standards, leverage commercial efforts
- Result = standard interfaces & behaviors for distributed system mgmt: the <u>Grid Service</u>
 - Standardization within Global Grid Forum
 - GT3 open source implementation
- OGSA = Web services on steroids!

Open Grid Services Infrastructure (OGSI)

the globus project WWW.globu GSA Standardization & Implementation

- OGSI defines core interfaces and behaviors for manageable services
- Efforts are underway within GGF, OASIS, and other bodies to define standards for
 - Agreement negotiation
 - Common management model
 - Data access and integration
 - Security and policy
 - Etc., etc., etc.
- Supported by strong open source technology
 & major commercial vendors

Grid Infrastructure

- Broadly deployed services in support of fundamental collaborative activities
 - Formation & operation of virtual organizations
 - Authentication, authorization, discovery, ...
- Services, software, and policies enabling ondemand access to critical resources
 - Computers, databases, networks, storage, software services,...
- Operational support for 24x7 availability
- Integration with campus and commercial infrastructures

the globus project[™] www.globus.org

Where We Are: What We Can Do Today

- A core set of Grid capabilities are available and distributed in good quality form, e.g.
 - Globus Toolkit: security, discovery, access, data movement, etc.
 - Condor: scheduling, workflow management
 - Virtual Data Toolkit, NMI, EDG, etc.
- Deployed at moderate scales
 - WorldGrid, TeraGrid, NEESgrid, DOE SG, EDG, ...
- Usable with some hand holding, e.g.
 - US-CMS event prod.: O(6) sites, 2 months
 - NEESgrid: earthquake engineering experiment

the globus project NEESgrid Earthquake www.globus.org Collaboratory

the globus project WWW.globu Corg MS Event Simulation Production

- Production Run on the Integration Testbed
 - Simulate 1.5 million full CMS events for physics studies: ~500 sec per event on 850 MHz processor
 - 2 months continuous running across 5 testbed sites
 - Managed by a single person at the US-CMS Tier 1

the globus project WWW.globu Org MS Event Simulation Production

Production Run on the Integration

Simulate 1.5 million full CM studies: ~500 sec per ex

- 2 months continuous

- Managed by a sign

Tier 1

Where We Are: Key Areas of Concern

- Integration with site operational procedures
 - Many challenging issues
- Scalability in multiple dimensions
 - Number of sites, resources, users, tasks
- Higher-level services in multiple areas
 - Virtual data, policy, collaboration
- Integration with end-user science tools
 - Science desktops
- Coordination of international contributions
- Integration with commercial technologies

Summary: Grid Past, Present, Future

Past

 Origins and broad adoption in eScience, fueled by open source Globus Toolkit

Present

- Rapidly growing commercial adoption focused on intra-enterprise resource sharing
- Increasingly large scale infrastructures
- Open Grid Services Architecture (OGSA)

Future

 Key enabler of new applications & industries based on resource virtualization and distributed service integration

the globus project* www.globus.or

For More Information

- GriPhyN, iVDGL, PPDG
 - www.griphyn.org,www.ivdgl.org, www.ppdg.net
- The Globus Project®
 - www.globus.org
- Global Grid Forum
 - www.ggf.org
- Background information
 - www.mcs.anl.gov/~foster
- GlobusWORLD 2004
 - www.globusworld.org
 - Jan 20-23, San Fran

