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I discuss our current understanding of parton distributions. I begin with the underlying theoretical framework, and

the way in which different data sets constrain different partons, highlighting recent developments. The methods of

examining the uncertainties on the distributions and those physical quantities dependent on them is analyzed. Finally

I look at the evidence that additional theoretical corrections beyond NLO perturbative QCD may be necessary, what

type of corrections are indicated and the impact these may have on the uncertainties.

1. Introduction

The proton is described by QCD – the theory of the

strong interactions. This makes an understanding of

its structure a difficult problem. However, it is also

a very important problem – not only as a question in

itself, but also in order to search for and understand

new physics. Many important particle colliders use

hadrons – HERA is an ep collider, the Tevatron is a

pp̄ collider, the LHC at CERN will be a pp collider,

and an understanding of proton structure is essential

in order to interpret the results. Fortunately, when

one has a relatively large scale in the process, in prac-

tice only > 1 GeV2, the proton is essentially made up

of the more fundamental constituents – quarks and

gluons (partons), which interact relatively weakly.

Hence, the fundamental quantities one requires in the

calculation of scattering processes involving hadronic

particles are the parton distributions. These can be

derived from, and then used within, the factorization

theorem which separates processes into nonperturba-

tive parts which can be determined from experiment,

and perturbative parts which can be calculated as a

power-series in the strong coupling constant αS .

This is illustrated in the canonical example of

deep-inelastic scattering. The cross section for the

virtual photon-proton interaction can be written in

the factorized form

σ(ep→ eX) =
∑

i

CDIS
i (x, αs(Q

2))⊗ fi(x,Q2)

where Q2 is the photon virtuality, x = Q2

2mν
, the mo-

mentum fraction of the parton (ν=energy transfer

in the lab frame), and the fi(x,Q
2) are the parton

distributions, i.e. the probability of finding a parton

of type i carrying a fraction x of the momentum of

the hadron. Corrections to the above formula are of

O(Λ2
QCD/Q

2) and are known as higher twist. The

parton distributions are not easily calculable from

first principles. However, they do evolve with Q2

in a perturbative manner, satisfying the evolution

equation

dfi(x,Q
2)

d lnQ2
=
∑

j

Pij(x, αs(Q
2))⊗ fj(x,Q2)

where the splitting functions Pij(x, αs(Q
2)) are cal-

culable order by order in perturbation theory. The

coefficient functions CP
i (x, αs(Q

2)) describing a hard

scattering process are process dependent but are

calculable as a power-series, i.e. CP
i (x, αs(Q

2)) =
∑

k C
P,k
i (x)αks (Q

2). Since the fi(x,Q
2) are process-

independent, i.e. universal, once they have been

measured at one experiment, one can predict many

other scattering processes.

Global fits1−7 use all available data, largely

structure functions, and the most up-to-date QCD

calculations, currently NLO–in–αs(Q
2), to best de-

termine these parton distributions and their conse-

quences. In the global fits input partons are param-

eterized as, e.g.

xf(x,Q2
0) = (1− x)η(1 + εx0.5 + γx)xδ

at some low scale Q2
0 ∼ 1− 5 GeV2, and evolved up-

wards using NLO evolution equations. Perturbation

theory should be valid if Q2 > 2 GeV2, and hence

one fits data for scales above 2 − 5 GeV2, and this

cut should also remove the influence of higher twists,

i.e. power-suppressed contributions.

In principle there are many different parton dis-

tributions – all quarks and antiquarks, and the glu-

ons. However, mc,mb À ΛQCD (and top does not

usually contribute), so the heavy parton distribu-

tions are determined perturbatively. Also we usu-

ally assume s = s̄, and that isospin symmetry holds,

i.e. p → n leads to d(x) → u(x) and u(x) → d(x).
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This leaves 6 independent combinations. Relating s

to 1/2(ū+ d̄) we have the independent distributions

uV = u− ū, dV = d− d̄, sea = 2(ū+ d̄+ s̄), d̄− ū, g.

It is also convenient to define Σ = uV + dV + sea +

(c+c̄)+(b+b̄). There are then various sum rules con-

straining parton inputs and which are conserved by

evolution order by order in αS , i.e. the number of up

and down valence quarks and the momentum carried

by partons (the latter being an important constraint

on the gluon which is only probed indirectly),

∫ 1

0

xΣ(x) + xg(x) dx = 1.

When extracting partons one needs to consider

that not only are there 6 independent combinations,

but there is also a wide distribution of x from 0.75

to 0.00003. One needs many different types of ex-

periment for a full determination. The sets of data

usually used are: H1 and ZEUS F p
2 (x,Q

2) data8,9

which covers small x and a wide range of Q2; E665

F p,d
2 (x,Q2) data10 at medium x; BCDMS and SLAC

F p,d
2 (x,Q2) data11,12 at large x; NMC F p,d

2 (x,Q2)13

at medium and large x; CCFR F
ν(ν̄)p
2 (x,Q2) and

F
ν(ν̄)p
3 (x,Q2) data14 at large x which probe the sin-

glet and valence quarks independently; ZEUS and

H1 F p
2,charm(x,Q2) data;15,16 E605 pN → µµ̄ +

X17 constraining the large x sea; E866 Drell-Yan

asymmetry18 which determines d̄ − ū; CDF W-

asymmetry data19 which constrains the u/d ratio at

large x; CDF and D0 inclusive jet data20,21 which tie

down the high x gluon; and NuTev Dimuon data22

which constrain the strange sea.

The determination of the different partons in

given kinematic ranges can be split into a few differ-

ent classes. We begin with large x. Here the quark

distributions are determined mainly from structure

functions, which are dominated by non-singlet va-

lence distributions. Both the evolution of these

non-singlet distributions and conversion to structure

functions is quite simple involving no parton mixing

dfNS(x,Q2)

d lnQ2
= PNS(x, αs(Q

2))⊗ fNS(x,Q2)

FNS
2 (x,Q2) = CNS(x, αs(Q

2))⊗ fNS(x,Q2).

Hence, the evolution of high x structure functions is

a good test of the theory and of αS(Q
2). The suc-

cess is shown in Fig. 1. However - perturbation the-

ory involves contributions to the coefficient functions

∼ αnS(Q
2) ln2n−1(1 − x) and higher twist contribu-

tions are known to be enhanced as x → 1. Hence,

in order to avoid contamination of NLO theory one

makes a cutW 2 = Q2(1/x−1)+m2
p ≤ 10−15 GeV2.
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Figure 1. Description of large x BCDMS and SLAC measure-
ments of F p

2
.

The extension to very small x has been made

in the past decade by HERA. In this region there

is very great scaling violation of the partons from

the evolution equations and also interplay between

the quarks and gluons. At each subsequent order

in αS each splitting function and coefficient function

obtains an extra power of ln(1/x) (some accidental

zeros in Pgg), i.e. Pij(x, αs(Q
2)), CP

i (x, αs(Q
2)) ∼

αms (Q2) lnm−1(1/x), and hence the convergence at

small x is questionable. The global fits usually as-

sume that this turns out to be unimportant in prac-

tice, and proceed regardless. The fit is good, but

could be improved. The large ln(1/x) terms mean

that small x predictions are somewhat uncertain,

as will be discussed later. Small x parton distribu-

tions are therefore an interesting field of study within

QCD. They are also vital for understanding the stan-

dard production processes at the LHC, and perhaps

some of the more exotic ones, as shown in Fig. 2,

which demonstrates the range of x probed by the

experiment.
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0.3 0.4 0.5 0.6 0.7 0.8
x

1

0.75

1

1.25

dσ
ex

p /d
x 1 / 

dσ
M

R
ST

20
01

/d
x 1

MRST2001
uncertainty
pd fit
pp fit

0.05 0.1 0.15 0.2 0.25
x

2

0.75

1

1.25

dσ
ex

p /d
x 2 / 

dσ
M

R
ST

20
01

/d
x 2

pd → µ+µ−
 X

pp → µ+µ−
 X

+/- 6.5% normalization uncertainty

a)

b)

+/- 6.5% normalization uncertainty

Figure 3. E866 fit to their Drell-Yan data as a function of x1

(quark) and x2 (antiquark).

The high-x sea quarks are determined by

Drell-Yan data (assuming good knowledge of the va-

lence quarks). There is new precise data from the

E866/NuSea collaboration,23 and their fit to these

data shows a discrepancy with existing partons im-

plying larger high-x valence quarks, as shown in

Fig. 3. However, the fit performed by MRST (Fig. 4)

and CTEQ displays no such discrepancy.

E866 pd data and MRST2001 (xF > 0.45)
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Figure 4. MRST fit to the E866 data for high values of xF .

The s(x) and s̄(x) distributions are probed

using CCFR and NuTeV dimuon data, i.e. the pro-

cesses

ν + s→ µ− + c(µ+), ν̄ + s̄→ µ+ + c̄(µ−).

The quality of data is now such that one can exam-

ine the s(x) and s̄(x) distributions separately. This

has recently been performed in detail by CTEQ.24

They find that s(x) < s̄(x) at quite small x, but

since
∫

(s(x) − s̄(x)) dx = 0, (zero strangeness num-

ber) this leads to →
∫

x(s(x)− s̄(x)) dx = [S−] > 0,

as demonstrated in Fig. 5. They obtain the rough

constraint 0 < [S−] < 0.004. This is particularly

significant because NuTeV measure25

R− =
σνNC − σν̄NC
σνCC − σν̄CC

,

and in the standard model this satisfies R− =
1
2 − sin2 θW − (1 − 7

3 sin
2 θW ) [S

−]
[V −] . There is cur-

rently a 3σ discrepancy between this determination
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Figure 5. CTEQ strange momentum asymmetry (top) and
number asymmetry (bottom).

of sin2 θW and others26 but [S−] = 0.002 reduces

this anomaly from 3σ to 1.5σ. NuTeV themselves

claim no such strange asymmetry when using par-

tons obtained from fitting their own data,22 so this

is an issue which requires resolution.

MRST also look at the effect of isospin

violation27 since R− also depends on this –

R− =
1

2
− sin2 θW + (1− 7

3
sin2 θW )

[δUv]− [δDv]

2[V −]
,

where [δUv] = [Up
v ]− [Dn

v ], [δDv] = [Dp
v]− [Un

v ], and

MRST use the simple parameterization

upv(x) = dnv (x) + κf(x), dpv(x) = unv (x)− κf(x),

where f(x) is a simple function maintaining required

conservation laws. The dependence on κ is shown

in Fig. 6. The best fit value of κ = −0.2 leads

to a similar reduction of the NuTeV anomaly, i.e.

∆sin2θW ∼ −0.002. But there is only a weak indi-

cation of this value and a fairly wide variation in κ

is allowed.
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Figure 6. ∆χ2 against the isospin violating parameter κ.

The best determination of the high-x gluon

distribution comes from inclusive jet measurements

by D0 and CDF at the Tevatron. They measure

dσ/dET dη for central rapidity CDF or in bins of ra-

pidity D0. At central rapidity the kinematic equal-

ity (at LO) is x = 2ET /
√
s, and measurements ex-

tend up to ET ∼ 400 GeV (x ∼ 0.45), and down

to ET ∼ 60 GeV (x ∼ 0.06). Gluon-gluon fusion

dominates the hard cross section, but g(x, µ2) falls

off more quickly as x → 1 than q(x, µ2) so there

is a transition from gluon-gluon fusion at small x,

to gluon-quark to quark-quark at high x. However,

as seen in Fig. 7 even at the highest x gluon-quark

contributions are significant. Jet photoproduction at

HERA will be another constraint in the future.

The above procedure completely determines the

parton distributions at present. The total fit is rea-

sonably good and for CTEQ62 is shown in Table 1

for the large data sets. The total χ2 = 1954/1811.

For MRST the total χ2 = 2328/2097 – but the er-

rors are treated differently, and different data sets

and cuts are used. The same sort of conclusion is

true for other global fits3−7 (which use fewer data).

However, there are some areas where the theory per-

haps needs to be improved, as we will discuss later.

2. Parton Uncertainties

2.1. Hessian (Error Matrix) Approach

In this one defines the Hessian matrix H by

χ2 − χ2min ≡ ∆χ2 =
∑

i,j

Hij(ai − a(0)i )(aj − a(0)j ).
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Figure 7. Fractional contributions to jet cross section from
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Table 1. Quality of fit to data for CTEQ6M.

Data Set no. of data χ2

H1 ep 230 228
ZEUS ep 229 263

BCDMS µp 339 378

BCDMS µd 251 280
NMC µp 201 305

E605 (Drell-Yan) 119 95
D0 Jets 90 65

CDF Jets 33 49

H is related to the covariance matrix of the param-

eters by Cij(a) = ∆χ2(H−1)ij , and one can use the

standard formula for linear error propagation,

(∆F )2 = ∆χ2
∑

i,j

∂F

∂ai
(H)−1ij

∂F

∂aj
.

This has been employed to find partons with errors

by Alekhin,5 as seen in Fig. 8 and also by H16 (each

with restricted data sets).

The simple method can be problematic with

larger data sets and larger numbers of parameters

due to extreme variations in ∆χ2 in different direc-

tions in parameter space. This is solved by finding

and rescaling the eigenvectors of H (CTEQ28,29,2)

Figure 8. Results for Alekhin partons at Q2 = 9 GeV2 with
uncertainties (solid lines) (dashed lines – CTEQ5M, dotted
lines – MRST01).

leading to the diagonal form

∆χ2 =
∑

i

z2i .

The uncertainty on a physical quantity is given by

(∆F )2 =
∑

i

(

F (S
(+)
i )− F (S

(−)
i )

)2
,

where S
(+)
i and S

(−)
i are PDF sets displaced along

eigenvector directions by a given ∆χ2. Similar eigen-

vector parton sets have also been introduced by

MRST31 and ZEUS. However, there is an art in

choosing the “correct” ∆χ2 given the complication

of the errors in the full fit.32 Ideally ∆χ2 = 1, but

this leads to unrealistic errors, e.g. values of αS(M
2
Z)

obtained by CTEQ using ∆χ2 = 1 for each data set

in the global fit are shown in Fig. 9, and are not con-

sistent. CTEQ choose ∆χ2 ∼ 100, which is perhaps

conservative. MRST choose ∆χ2 ∼ 50. An example

of results is shown in Fig. 10.

2.2. Offset Method

In this method the best fit and parameters a0 are

obtained using only uncorrelated errors. The quality

of the fit is then estimated by adding uncorrelated

and correlated errors in quadrature. Roughly speak-

ing systematic uncertainties are determined by let-

ting each source of systematic error vary by 1σ and
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adding the deviations in quadrature. This procedure

is used by ZEUS,7 and leads to an effective ∆χ2 > 1.

Some results are shown in Fig. 11.

2.3. Statistical Approach

In principle this involves the construction of an en-

semble of distributions labelled by F each with prob-

ZEUS
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Figure 11. The valence partons extracted by ZEUS from a
global fit and a fit to their own data alone (with some input

assumptions). The latter illustrates a potential for a real con-
straint from HERA data alone in the future.

ability P ({F}), where one can incorporate the full

information about measurements and their error cor-

relations into the calculation of P ({F}). This is sta-
tistically correct, and does not rely on the approx-

imation of linear propagation errors in calculating

observables. However, it is inefficient, and in prac-

tice one generates N (N can be as low as 100) dif-

ferent distributions with unit weight but distributed

according to P ({F}).4 Then the mean µO and devi-

ation σO of an observable O are given by

µO =
1

N

N
∑

1

O({F}), σ2O =
1

N

N
∑

1

(O({F})− µO)2.

Currently this approach uses only proton DIS

data sets in order to avoid complicated uncertainty

issues, e.g. shadowing effects for nuclear targets, and

also demands consistency between data sets. How-

ever, it is difficult to find many truly compatible DIS

experiments, and consequently the Fermi2001 par-

tons are determined by only H1, BCDMS, and E665

data sets. They result in good predictions for many

Tevatron cross sections, e.g. inclusive jets and W

and Z total cross sections. However, the restricted

data sets mean there is restricted information – data

sets are deemed either perfect or, in the case of most

of them, useless – leading to unusual values for some

parameters. e.g. αS(M
2
Z) = 0.112±0.001 and a very
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hard dV (x) at high x (together these two features fa-

cilitate a good fit to Tevatron jets independent of the

high-x gluon). These partons would produce some

extreme predictions, as seen later. Nevertheless, the

approach does demonstrate that the Gaussian ap-

proximation is often not good, and therefore high-

lights shortcomings in the methods outlined in the

previous sections. It is a very attractive, but ambi-

tious large-scale project, still in need of some further

development. In particular I feel it requires the inclu-

sion of a wider variety of data in order to overcome

the obstacle presented by the fact that most data

sets in the global fit are not really as consistent as

they should be in the strict statistical sense.

2.4. Lagrange Multiplier Method

This was first suggested by CTEQ30 and has been

concentrated on by MRST.31 One performs the fit

while constraining the value of some physical quan-

tity, i.e. one minimizes

Ψ(λ, a) = χ2global(a) + λF (a)

for various values of λ. This gives a set of best fits for

particular values of the quantity F (a) without rely-

ing on the quadratic approximation for χ2, as shown

for σW in Fig. 12. The uncertainty is then deter-

mined by deciding an allowed range of ∆χ2. One can

also easily check the variation in χ2 for each of the

experiments in the global fit and ascertain if the to-

tal ∆χ2 is coming specifically from one region, which

might cause concern. In principle, this is superior to

the Hessian approach, but it must be repeated for

each physical process.

Figure 12. χ2
global

for CTEQ plotted against σW .

2.5. Results

I choose the cross section for W and Higgs produc-

tion at the Tevatron and LHC (for MH = 115 GeV)

as examples. Using their fixed value of αS(M
2
Z) =

0.118 and ∆χ2 = 100 CTEQ obtain

∆σW (LHC) ≈ ±4% ∆σW(Tev) ≈ ±5%

∆σH(LHC) ≈ ±5%.
Using a slightly wider range of data, ∆χ2 ∼ 50 and

αS(M
2
Z) = 0.119 MRST obtain

∆σW (Tev) ≈ ±1.2% ∆σW(LHC) ≈ ±2%

∆σH(Tev) ≈ ±4% ∆σH(LHC) ≈ ±2%.
MRST also allow αS(M

2
Z) to be free. In this case

∆σW is quite stable but ∆σH almost doubles. Con-

tours of variation in χ2 for the predictions of these

cross sections are shown in Fig. 13.

The same general procedure is also used by

CTEQ34 to look at the effect of new physics param-

eterized by the contact term

±(2π/Λ2)(q̄Lγ
µqL)(q̄LγµqL).

The curves in Fig. 14 show the fit to the D0 jet data,

which is the most discriminating data set, for Λ =

1.6, 2.0, 2.4,∞ TeV, and A = −1. For the highest

values of Λ the fit even improves very slightly, but

Λ > 1.6TeV is clearly ruled out.

Hence, the estimation of uncertainties due to ex-

perimental errors has many different approaches and

different types and amount of data actually fit. Over-

all the uncertainty from this source is rather small –

only more than a few % for quantities determined

by the high x gluon and very high x down quark.

This is illustrated for the determinations of αS(M
2
Z)

in Table 2. There is generally good agreement, but

their are some outlying values.

These outlying values of αS(M
2
Z) show that dif-

ferent approaches can sometimes lead to rather dif-

ferent central values. This suggests that there are

other matters to consider as well as the experimen-

tal errors on data. We also need to determine the

effect of assumptions made about the fit, e.g. cuts

made on the data, the data sets fit, the parameter-

ization for input sets, the form of the strange sea,

etc.. Many of these can be as important as the er-

rors on the data used (or more so). This is demon-

strated by the results from the LHC/LP StudyWork-

ing Group35 shown in Table 3, and by predictions for
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Table 2. Values of αs(M2
Z
) and its error from different NLO QCD fits.

Group ∆χ2 αS(M
2
Z)

CTEQ6 ∆χ2 = 100 αs(M
2
Z) = 0.1165± 0.0065(exp)

ZEUS ∆χ2eff = 50 αs(M
2
Z) = 0.1166± 0.0049(exp) ±0.0018(model) ±0.004(theory)

MRST01 ∆χ2 = 20 αs(M
2
Z) = 0.1190± 0.002(exp) ±0.003(theory)

H1 ∆χ2 = 1 αs(M
2
Z) = 0.115± 0.0017(exp) + 0.0009

− 0.0005 (model) ±0.005(theory)
Alekhin ∆χ2 = 1 αs(M

2
Z) = 0.1171± 0.0015(exp) ±0.0033(theory)

GKK CL αs(M
2
Z) = 0.112± 0.001(exp)
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Figure 13. χ2-plot for W and Higgs production at the Teva-

tron (top) and LHC (bottom) with αS free (dashed) and fixed
(solid) at αS = 0.119.

σW by MRST CTEQ and Alekhin36 in Table 4. In

both cases the discrepancies are mainly due to differ-

ences in detailed constraints (by data) on the quark

decomposition. Differences between predictions are

also shown by Fig. 15 – the predictions for W and

Figure 14. Fits to D0 jets for different values of A.

Table 3. Cross sections for Drell-Yan pairs (e+e−) with
PYTHIA 6.206, rapidity < 2.5. The errors shown are the PDF
uncertainties.

PDF set Comment xsec [pb] PDF uncertainty

81 < M < 101 GeV

CTEQ6 LHAPDF 1065 ± 46 4.4%

MRST2001 LHAPDF 1091 ± ... 3%
Fermi2002 LHAPDF 853 ± 18 2.2%

Higgs production at the Tevatron from MRST2001

and CTEQ6, and Fig. 16 – the comparison between

the gluons for the two parton sets.

3. Theoretical Errors

3.1. Problems in the Fit

As well as the consequences of these assumptions we

must consider the related problem of theoretical er-

rors. Theoretical errors are indicated by some re-

gions where the theory perhaps needs to be improved

to fit the data better. There is a reasonably good
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Table 4. Comparison of σW ·Blν for different partons.

PDF set Comment xsec [nb] PDF uncertainty

Alekhin Tevatron 2.73 ± 0.05 (tot)

MRST2002 Tevatron 2.59 ± 0.03 (expt)

CTEQ6 Tevatron 2.54 ± 0.10 (expt)

Alekhin LHC 215 ± 6 (tot)

MRST2002 LHC 204 ± 4 (expt)

CTEQ6 LHC 205 ± 8 (expt)
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Figure 15. χ2-plot for W and Higgs production at the Teva-

tron with αS free. The predictions from CTEQ6 is marked.

fit to HERA data, but there are some problems at

the highest Q2 at moderate x, i.e. in dF2/d lnQ
2,

as seen for MRST and CTEQ in Fig. 17. Also the

data require the gluon to be valence-like or nega-

tive at small x and low Q2, e.g. the ZEUS gluon in

Fig. 18, leading to FL(x,Q
2) being negative1 at the

smallest x,Q2. However, it is not just the low x–low

Q2 data that require this negative gluon. The mod-

erate x data need lots of gluon to get a reasonable

dF2/d lnQ
2 and the Tevatron jets need a large high x

gluon, and this must be compensated for elsewhere.

In general MRST find that it is difficult to reconcile

the fit to jets and to the rest of the data, Fig. 19,

and that different data compete over the gluon and

αS(M
2
Z). The jet fit is better for CTEQ6 largely due

to their different cuts on other data. Other fits do

not include the Tevatron jets, but generally produce

gluons largely incompatible with this data.

3.2. Types of Theoretical Error, NNLO

It is vital to consider theoretical errors. These

include higher perturbative orders (NNLO), small

Uncertainty of gluon from Hessian method
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Figure 16. Fractional uncertainty in the MRST gluon com-

pared with the difference in the central CTEQ6 gluon.

x (αns ln
n−1(1/x)), large x (αns ln

2n−1(1 − x)) low

Q2 (higher twist), etc.. Note that renormaliza-

tion/factorization scale variation is not a reliable

method of estimating these theoretical errors because

of increasing logs at higher orders.

In order to investigate the true theoretical error

we must consider some way of performing correct

large and small x resummations, and/or use what we

already know about NNLO. The coefficient functions

are known at NNLO. Singular limits x → 1, x → 0

are known for NNLO splitting functions as well as

limited moments,37 and this has allowed approximate

NNLO splitting functions to be devised38 which have

been used in approximate global fits.39 They improve

the quality of the fit very slightly (mainly at high

x) and αS(M
2
Z) lowers from 0.119 to 0.1155. The

gluon is smaller at NNLO at low x due to the positive

NNLO quark-gluon splitting function. There is also

a NNLO fit by Alekhin,40 with some differences – the

gluon is not smaller, probably due to the absence of

Tevatron jet data in the fit and to a very different
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MRST(2001) NLO fit , x= 0.008 - 0.032
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Figure 17. Comparison of MRST(2001) F2(x,Q2) with

HERA, NMC and E665 data (top) and CTEQ6 F2(x,Q2) with
H1 data (bottom).
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Figure 18. ZEUS gluon and sea quark distributions at various
Q2 values.

definition of the NNLO charm contribution. There

is agreement in the reduction of αS(M
2
Z) at NNLO,

i.e. 0.1171→ 0.1143.

Using these NNLO partons there is reasonable

stability order by order for the (quark-dominated)

W and Z cross sections, as seen in Fig. 20. However,

the change from NLO to NNLO is of order 4%, which

is much bigger than the uncertainty at NLO due to

experimental errors. Also, this fairly good conver-

gence is largely guaranteed because the quarks are

fit directly to data. There is greater danger in gluon

dominated quantities, e.g. FL(x,Q
2), as can be seen

in Fig. 21. Hence, the convergence from order to

order is uncertain.

3.3. Empirical Approach

We can estimate where theoretical errors may be im-

portant by adopting the empirical approach of inves-

tigating in detail the effect of cuts on the fit quality,

i.e. we try varying the kinematic cuts on data. The

procedure is to change W 2
cut, Q

2
cut and/or xcut, re-fit

and see if the quality of the fit to the remaining data



11

MRST 2002 and D0 jet data, αS(MZ)=0.1197 , χ2= 85/82 pts
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Figure 19. The MRST fit to D0 jet data. The points show
the range of the systematic errors.

improves and/or the input parameters change dra-

matically. (This is similar to a previous suggestion

in terms of data sets.41) One then continues until the

quality of the fit and the partons stabilize.27

For W 2
cut raising from 15 GeV2 has no effect.

When raising Q2
cut from 2 GeV2 in steps there is a

slow, continuous and significant improvement for Q2

up to > 10 GeV2 (560 data points cut), suggest-

ing that any corrections are probably higher orders

not higher twist. The input gluon becomes slightly

smaller at low x at each step (where one loses some

of the lowest x data), and larger at high x. The

value of αS(M
2
Z) slowly decreases by about 0.0015.

Raising xcut leads to continuous improvement with

stability reached at x = 0.005 (271 data points cut)

with αS(M
2
Z) → 0.118. There is an improvement

in the fit to HERA, NMC and Tevatron jet data,

and much reduced tension between the data sets. At

each step the moderate x gluon becomes more pos-

itive, at the expense of the gluon below the cut be-
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Figure 20. LO, NLO and NNLO predictions forW and Z cross
sections.

coming very negative and dF2(x,Q
2)/d lnQ2 being

incorrect. However, higher orders could cure this in

a quite plausible manner. For example adding higher

order terms to the splitting functions

Pgg → ....+
3.86ᾱ4S
x

(

ln3(1/x)

6
− ln2(1/x)

2

)

,

Pqg → ....+
5.12Nf ᾱ

5
S

6x

(

ln3(1/x)

6
− ln2(1/x)

2

)

,

leaves the improved fit above x = 0.005 largely un-

changed, but solves the problem below x = 0.005.

Saturation corrections added to NLO and NNLO fits

seem to make the situation worse. Hence, the cuts

are suggestive of theoretical errors for small x and/or

small Q2. Predictions forW and Higgs cross sections

at the Tevatron are still safe if xcut = 0.005, since

they do not sample partons at lower x. However,

they change in a smooth manner as xcut is lowered,

due to the altered partons above xcut.

There is a lot of work on explicit ln(1/x)-

resummations in structure functions and parton dis-

tributions for example,42,43,44 but there is no com-

plete consensus on the best approach. There is
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Figure 21. Comparison of the predictions for FL(x,Q
2) at LO,

NLO and NNLO using MRST partons and also a ln(1/x)-

resummed prediction.42

also work on connecting the partons to alterna-

tive approaches at small x, e.g. dipole models45

and pomerons.46 These approaches can suggest im-

provements to the fits and changes in predictions,

e.g. a resummed prediction42 for FL(x,Q
2) is shown

on Fig. 21. Accurate and direct measurements of

FL(x,Q
2) and other quantities at low x and/or Q2

(the predicted range and accuracy of FL(x,Q
2) mea-

surements at HERA III is shown on Fig. 21) would be

a great help in determining whether NNLO is suffi-

cient or whether resummed (or other) corrections are

necessary, or helpful for maximum precision.

4. Conclusions

One can perform global fits to all up-to-date data

over a wide range of parameter space, and there are

various ways of looking at uncertainties due to er-

rors on data alone. There is no totally preferred

approach. The errors from this source are rather

small – ∼ 1 − 5% except in a few regions of param-

eter space and are similar using various approaches.

The uncertainty from input assumptions e.g. cuts

on data, parameterizations etc., are comparable and

sometimes larger, which means one cannot entirely

believe one group’s errors.

The quality of the fit is fairly good, but there are

some slight problems. These imply that errors from

higher orders/resummation are potentially large in

some regions of parameter space, and due to corre-

lations between partons these affect all regions (the

small x gluon influences the large x gluon). Cutting

out low x and/or Q2 data allows a much-improved fit

to the remaining data, and altered partons. Hence,

for some processes theory is probably the dominant

source of uncertainty at present and a systematic

study is a priority, as is more data which would help

determine our theoretical accuracy.
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DISCUSSION

Bogdan Dobrescu (Fermilab): Very recently,

CTEQ has done a global fit allowing s 6= s̄, and

MRST has done a global fit allowing an isospin

violation. These two effects could in principle be

correlated. Are there any plans for performing a

global fit that allow both a strange asymmetry

and isospin violation?

Robert Thorne: Yes, in principle those two effects

could be correlated. In fact there are a lot

of other things that you might have to worry

about, for example uncertainties due to heavy

target corrections. At the moment, for many of

these we are just looking at one effect at a time.

In the future it will be ideal, or even necessary,

to do all of these in a global fit at the same time,

but I think it will be a little while before that

actually happens.

Regina Demina (University of Rochester): NLO

calculations are used to predict many flavor

PDF’s. At the same time theory had only a

marginal success in predicting heavy flavor pro-

duction at Tevatron. New data from HERA

starts probing b photoproduction. What are the

plans for using this data in PDF fits in the fu-

ture? What measurements can be done at the

Tevatron to constrain these?

Robert Thorne: Well, in general heavy flavor

should be generated highly perturbatively.

There is a question about intrinsic heavy flavor

but that would generally be important at very

high x and relatively low Q2, which isn’t where

either the Tevatron or HERA actually measure

the heavy flavor sensitive quantities. In charm

production the agreement generally seems to be

good, whereas in beauty production the agree-

ment somewhat conversely seems to be worse,

where one would expect the theoretical predic-

tion to be more reliable. For issues like the Teva-

tron beauty production there has been quite a

lot of progress in things that might be going

wrong such as the fragmentation functions. And

there, one also has to get the best theoretical

perturbative calculations which involves the re-

summation of any large logarithms. This is of-

ten not done in some of these comparisons. I

think that this is something we have to look at

very carefully, but some of the other speakers

have talked about this so I didn’t concentrate on

it. As far as the measurements are concerned,

as I said, at small x and relatively high scales it

really should be perturbative. It is just a mat-

ter of what perturbative calculation would give

the best result. If you want to look at some-

thing sensitive to intrinsic heavy flavor then it

begins at high x, so if there is any way of prob-

ing bottom or charm at high x... but that is not

really the natural region for the Tevatron or for

HERA.

Sridhara Dasu (U. Wisconsin): You talked about

F2 predictions at various x,Q2. However, in

making global fits both MRST and CTEQ seem

to ignore existing FL(x,Q
2) data from SLAC

and CCFR. Although these data are at 1 <

Q2 < 10 GeV 2, they do constrain the large x

(x > 0.1) region. Why not use these data to get

better gluon PDF’s at x > 0.1?

Robert Thorne: We always have to make some de-

cision on which data are put into the fit, and

which data we check are consistent with the par-

tons we obtain. In this case we check when we

do have consistency. This breaks down at lower

Q2 presumably due to higher twist corrections,

which can be larger at moderate x for FL than

F2. Also, at high x even FL is largely deter-

mined by valence quarks. Concerning the low

x FL extractions at HERA we essentially do in-

clude FL in the fit since we actually fit to what

is measured - the reduced cross section, which

depends on both F2 and FL at high y.

Debbie Harris (Fermilab): You pointed out that

NuSea data, when analyzed by NuSea, doesn’t

agree with MRST, yet MRST claims it does.

At Tuesday’s breakout session there was a dis-

cussion where NuTeV showed that their dimuon

data also does not agree with the newest CTEQ

fits allowing s 6= s̄. The jury is still out, and

more collaboration is needed.

Robert Thorne: I agree that more collaboration

is needed particularly on the question of the
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strange asymmetry. MRST has yet to fit the

dimuon data themselves in order to look for a

s-s̄ asymmetry. This topic should be a very in-

teresting area of study.


