THE LHCb LEVEL-1 TRIGGER

Thomas Schietinger

Institute for High-Energy Physics University of Lausanne Switzerland

for the

LHCb collaboration

LHC symposium 2003 May 1–3, 2003 Fermilab

LHCb IN NUMBERS

- Design Luminosity: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} = 200 \ \mu \text{b}^{-1}/\text{s}$
- $\sigma_{total} \approx 100 \text{ mb}, \sigma_{inel} \approx 80 \text{ mb}, \sigma_{vis} \approx 60 \text{ mb}$ \Rightarrow 12 MHz total (visible) event rate
- Assumed σ_{bb} ≈ 500 μb
 ⇒ 100 kHz B event rate!
- But low branching fractions! Expect (offline reconstructable events):
 - $B_d \rightarrow J/\psi(\mu^- \mu^+) K_S(\pi^- \pi^+)$: 1 per minute
 - $B_d \rightarrow \pi^- \pi^+$: 1 in two minutes
 - $B_s \rightarrow D_s^{-}(K^+K^-\pi^-) K^+$: 1 in six minutes
 - $B_s \rightarrow \mu^- \mu^+$:

1 per week (?)

LEVEL-1 STRATEGY

B hadrons are the **elephants** of the particle zoo: they are **heavy** and **long-lived**

Approximation at trigger level: look for tracks with both

- high transverse momentum (p_T) and
- high impact parameter (relative to primary vertex)

How do we measure impact parameters and p_T ?

IMPACT PARAMETER (1)

measure impact parameters with the **VE**rtex **LO**cator:

21 stations, each with 2 r-

and 2 φ -sensors

IMPACT PARAMETER (2)

r-z projection contains most of the impact parameter information:

 \Rightarrow fast r-z tracking using only r-sensors (straight-forward thanks to rather low occupancy in 45° sectors!)

ϵ = 98% for B tracks

primary vertex resolution:

However: p_T measurement via extrapolation necessitates 3D tracks! \Rightarrow Reconstruct in 3D (φ -sensors) **only** those tracks that have **large impact parameter!** (between 0.2 mm and 3 mm)

PT **MEASUREMENT**

We must extrapolate tracks to some measurement that is influenced by the magnetic field!

Two complementary approaches:

 1) Fringe field before the magnet: extrapolation to first tracking station,
 TT (= Trigger Tracker), situated between VELO and magnet
 ⇒ coarse momentum resolution but high efficiency

2) Full p_T kick after the magnet:
 recycle calorimeter clusters and muon track
 segments found by Level-0, try to match
 them to VELO tracks!
 ⇒ better momentum resolution but low

efficiency

P_T **MEASUREMENT:** L0

 $\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi(\mu^{+}\mu^{-})\Phi$

Complementary approach:

Try to match tracks found in the VELO to high-p_T objects found by Level-0:

- muon track segments
- calorimeter clusters (ECAL and HCAL)

Example: VELO slopes in x and y, comparison between predictions from Level-0 objects and actual VELO tracks

LHCb Level-1 Trigger

PT **MEASUREMENT: L0**

Example:

μμ **invariant mass** available at Level-1!

- ⇒ can boost dimuon channels at small cost in bandwidth!
 - $B \rightarrow J/\psi(\mu^+\mu^-)X$ channels
 - $\ B \to K^* \mu^+ \mu^-$
 - $\ B \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

Many more knobs to turn..., under study!

DECISION ALGORITHM

- among the tracks with high impact parameter [0.2 3 mm], select the two with the highest p_T
- using the measured p_{T} 's estimate the significances of the impact parameters of the two tracks (d/ σ_{d})
- apply a **2D cut** in the plane $\Sigma \log(p_T)$ vs $\Sigma \log(d/\sigma_d)$

 relax the cut in the presence of specific signatures (dimuon mass, high-p_T photons from L0 etc.)

Thomas Schietinger (Lausanne)

LHCb Level-1 Trigger

$B \rightarrow$	ε _{L1}	€ _{L0×L1}
π+π-	50.5%	30.9%
D _s ⁻ K ⁺	65.4%	28.6%
J/ψ(μ⁺μ⁻) K s	71.1%	64.8%
J/ψ(μ⁺μ⁻) φ	73.1%	67.9%
Κ* ⁰ γ	32.7%*	26.7%

* before use of L0 photon

- Level-1 is a **software trigger**
 - maximum flexibility at an early stage!
- Level-1 farm now a part of the LHCb online farm:
 - larger L1 event size (with TT data, possibly more tracking stations)
 - smaller global event size due to detector reoptimization (LHCb-light)
 - \Rightarrow L1 and global event sizes not so different anymore!
- 1200 processors foreseen for triggers (L1 and HLT)
 - flexible allocation between L1 and HLT, currently planning on 800 processors for L1
 - \Rightarrow average processing time of 800 µs per event (1 MHz input rate)
- Level-1 buffer holds 58k events \Rightarrow > 50 ms latency

TIMING

(preliminary studies)

2D tracking	~60%
primary vertex	~10%
3D tracking*	~10%
p _T measurement* (match to TT+L0)	~20%
* selected tracks only	

- on average ~7 ms / event for complete L1 decision measured with 2002 CPUs
- expect a factor 7–8 in CPU power between 2002 and 2007 (PASTA* report)
- ⇒ we are already in the right ballpark! (many optimizations still to come)

* **PASTA** = The LHC Technology Tracking Team for **P**rocessors, Memory, **A**rchitectures, **ST**orage and **TA**pes

SUMMARY

- The LHCb Level-1 trigger is a software trigger
- Selection of events containing b hadrons by searching for high impact parameter and high transverse momentum of daughter tracks
- detector input from:
 - VErtex LOcator (impact parameter)
 - Trigger Tracker
 L0 decision unit
 (p_T)
- Preliminary studies show satisfactory physics performance within time budget
- More detailed studies for Technical Design Report, due in September '03

