Beauty and Charm Physics at CDF Run II

Mary Bishai (for the CDF II collaboration)

IV International Symposium on LHC Physics and Detectors FERMILAB, May 1-3 , 2003

Topics

- b and c production Run II
- Masses, lifetimes, branching fractions of b/c hadrons.
- CKM matrix physics at CDF

- New central tracker w/ 96 layers
- 8 Layers of 3-D Silicon up to $|\eta| = 2$, $\sigma(d_0) \sim 20 \mu m$
- New TOF system
- Track Triggers at Level 1 (Central tracking) and Level 2 (Si tracking) with $p_t > 1.5 \ GeV/c$ $|\eta| < 1.0$

Run II Secondary Vertex Trigger

Charm in Run II

Feb'-02 charm signals reconstructed with online SVT tracks.

Mary Bishai, FNAL

Direct Charm Production Run II

Use impact parameter of reconstructed charm mesons $F_D(d_0)$ to distinguish directly produced charm from $B \to DX$, $F_B(d_0)$

From $K_s \to \pi \pi$ data we find $F_D(d_0) = \text{Gaussian} + \exp \text{ tails.}$ From $B \to DX$ MC : $F_D(d_0) = a$ double componential

 $F_B(d_0) =$ a double exponential.

Direct Charm Production X-Sec.

Page 7

Cacciari, Nason hep-ph/0204025 (Run I Data)

 $E/T = 1.7 \pm 0.5(theory) \pm 0.5(expt)$

Run II: test current theory predictions at $p_t^{min} < 5 \text{ GeV}$

When $p_T >> m_b$, large logarithms of the ratio p_T/m_b arise ξ in the coefficients of the pertur- $\underset{m_{\rm H}}{\underline{\exists}}$ 10² bative expansion. Resummation $\overline{\vec{\xi}}$ of next-to-leading logs merged with the QCD NLO using a retuned fragmentation function from more recent e^+e^- data with NLL applied

 $p\overline{p} \rightarrow B^+ + X, \sqrt{s} = 1.8 \text{ TeV}, |y| < 1$ $\hat{}$ ^{10³} dashed: $\mu_{\rm R} = \mu_{\rm F} = \mu_0 = \sqrt{(m_{\rm b}^2 + p_{\rm T}^2)}$ solid: $\mu_0/2 < \mu_R, \mu_F < 2\mu_0$ CTEQ5M1 $m_{\rm b} = 4.75 \,\,{\rm GeV}$ $f(b \rightarrow B) = 0.375$ dotted: Peterson, $\epsilon = 0.006$ 10¹ O: CDF data Theory: FONLL with N=2 fit 100 15 10 20 25 p_T^B (GeV)

Run II dimuon trigger has been optimized and running stably at a rate of 12 J/ ψ s / nb⁻¹ ($|\eta| < 1.0$) since Jan. 2002

L1 μ trigger eff. $(|\eta| < 0.6, plat.=98\%)$ $p_t(J/\psi)$ GeV/c Run II di-muon trigger features:

- lower p_t reach: $p_t(\mu) > 1.5(|\eta| < 0.6), 2.0(0.6 < |\eta| < 1.0)$ $\rightarrow p_t(J\psi) = 0 \ GeV/c \rightarrow \text{TOTAL cross-sections}$
- Opening angle $\Delta \phi > 5^0$ (was 15^0) \rightarrow polarization.

Run II inclusive $J/\psi X$ **x-sec**

 $300 \text{K} J/\psi \text{ from } 37 \text{ pb}^{-1}$

 J/ψ inclusive x-sec

Detector acceptance First at a hadron collider !: Total J/ψ cross-section: $\sigma(p\overline{p} \rightarrow J/\psi X, | y(J/\psi) | < 0.6)$ $\times Br(J/\psi \rightarrow \mu\mu)$ $= 240 \pm 1(stat)^{+35}_{-28}(syst)$ nb

Run II new and improved triggers ! Larger kinematic coverage of the dimuon triggers, $|\eta| < 1$, $p_t(\mu) < 1.5$ GeV/c $(|\eta| < 0.6)$. Track triggers \Rightarrow large SVT b/c yields at $p_t(l) < 6GeV/c$ and $p_t(track) > 2GeV/c$. Test theory predictions in a different kinematic region.

Milestones on the road to HVQ production: Preliminary measurements of total inclusive J/ψ and open charm x-secs. Exclusive B mesons reconstructed. methods for seperation of prompt J/ψ and D from bs developed. Preliminary measurements of b production x-secs underway.

Masses, Lifetimes, Branching fractions

$J/\psi \text{ mass} \Rightarrow \sim 10\% \text{ of } SVXII \text{ material unaccounted for. Need}$

B meson masses

Run I B_s and Λ_b worlds best. Competitive measurements early.

Particle	Measured mass (GeV/c^2)	PDG 2002 mass
B^+	$5279.32 \pm 0.68(stat) \pm 0.94(syst)$	5279.0 ± 0.5
B^0	$5280.30 \pm 0.92(stat) \pm 0.96(syst)$	5279.4 ± 0.5
B^0_s	$5365.50 \pm 1.29(stat) \pm 0.94(syst)$	5369.6 ± 2.4

Measurement of $\Delta M(D_s^+ - D^+)$ is input to the overall PDG fit for all the charmed mesons. Predicted by HQET and Lattice QCD. $D_s^{\pm}, D^{\pm} \to \phi \pi, \ \phi \to KK$

Mary Bishai, FNAL

B_s lifetime using $B_s \to J/\psi\phi$

The ratio $\frac{\tau(B_s)}{\tau(B_d)}$ tests Heavy Quark Expansion theory predictions.

$B_u^+ \to J/\psi K^+$ control sample. $\tau(B^+) = 1.57 \pm 0.07(stat) \pm 0.02(syst)$ ps

Mary Bishai, FNAL

Beauty Baryons

Cabbibo suppressed D decay

Decays of D^0 to CP eigenstates K^+K^- and $\pi^+\pi^- \Rightarrow D^0$ mixing and CP violation. Use the π_s from $D^{*\pm} \to D^0\pi_s^{\pm}$ to tag flavor.

 $\frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K\pi)} = 9.38 \pm 0.18(stat) \pm 0.10(syst)\% \text{ CDF Run II}$ $\frac{\Gamma(D^0 \to K^+ K^-) / \Gamma(D^0 \to K\pi) = 9.93 \pm 0.14 \pm 0.14\% \text{ FOCUS2003}}{\Gamma(D^0 \to K\pi)} = 3.686 \pm 0.076(stat) \pm 0.036(syst)\% \text{ CDF Run II}$ $\frac{\Gamma(D^0 \to \pi^+ \pi^-) / \Gamma(D^0 \to K\pi) = 3.53 \pm 0.12 \pm 0.06\% \text{ FOCUS2003}}{\mathcal{A}_{cp}(D^0 \to KK) = 2.0 \pm 1.7(stat) \pm 0.6(syst)\%}$ $\mathcal{A}_{cp}(D^0 \to \pi\pi) = 3.0 \pm 1.9(stat) \pm 0.6(syst)\%$

Rare FCNC $D^0 \rightarrow \mu \mu$

Sensitive to physics beyond the SM (3×10^{-13}) . SUSY models with R-Parity violation predict up to 3.5×10^{-6}

Particle	Measured mass MeV/c^2	
B^+	$5280.6 \pm 1.7(stat) \pm 1.1(syst)$	
B^0	$5279.8 \pm 1.9(stat) \pm 1.4(syst)$	
B_s^0	$5360.3 \pm 3.8(stat)^{+2.1}_{-2.9}(syst)$	
$m(D_s^{\pm}) - m(D^{\pm})$	$99.41 \pm 0.38(stat) \pm 0.21(syst)$	
Particle	Lifetime	
B_s	$1.26 \pm 0.20(stat) \pm 0.02(syst)ps$	
Λ_b	$xxx \pm 0.13(stat) \pm 0.07(syst)ps$	
Decay	Branching fraction	
Decay $Br(D^0 \to \mu^+ \mu^-)$	Branching fraction $\leq 2.4 \times 10^{-6} @ 90\% C.L.$	

B_s hadronic - Run II

Compare $B_d \to D^-\pi$ and $B_u \to J/\psi K^+$ in TTT \Rightarrow trigger eff. understood. Normalize B_s to $B_d \to D^-\pi$, $D^- \to K\pi\pi$. B_s yield = 40 ± 10 events - much lower than expected but mostly understood.

Mary Bishai, FNAL

Direct CP violation in $B^0 \to \pi^+\pi^-$ Penguin "pollution" need $B \to K^+K^-$. Expect 500 $B \to hh/100pb^{-1}$. Goal is to measure $\mathcal{A}_{cp}(B_d \to \pi^+\pi^-, K^+\pi^-/B_s \to KK, K^-\pi^+/\Lambda_b^0 \to p^+\pi^-, p^+K^-)$

Differences in $\pi - K$ kinematics seperate $K\pi/\pi K$ from $\pi\pi/KK$ decays. Particle ID seperates $\pi\pi$ from KK and πK from $K\pi$

b/c Production Key triggers and detector performances well understood. Preliminary measurements of the direct open-charm and total inclusive charmonium cross-sections (systematics limited).

Masses, lifetimes, BRs Worlds best B_s mass, lifetime and worlds largest samples of Λ_b with ONLY 65pb⁻¹. Current best limit on FCNC $D^0 \rightarrow \mu\mu$ decays

CKM matrix physics: Key hadronic signals $B_s \to D_s^{(*)}\pi$ and $B \to h^+h^-$ established. Initial rates with non-optimized SVT are lower than expected but now mostly understood.

Detector performance

Clustering is well advanced. Now working on alignement and understanding resolution. Using L1 and L00 2 strip clusters to anchor track and look at residual in SVXII L0 - infer that without final alignment current 2-strip cluster resolution is $\sim 11 \mu m$ (design is $8 \mu m$).

Lepton+SVT Track trigger Yields

By spring (100 pb⁻¹) CDF will have one of the worlds largest semileptonic B samples from the inclusive Lepton + SVT.

SVXII = Lots of Material

From comparison to GEANT MC, we find we are still missing $\sim 10\%$ of the SVXII material in the simulation.

HVQ Production Theory

Basics of HVQ Production in $p\bar{p}$

Quarkonia production - Theory

Quarkonia bound states are non-relativistic. NRQCD LO perturbative expansion is $\mathcal{O}(\alpha_s^3 v^0)$ as in the color singlet model (CSM) + higher order $\mathcal{O}(\alpha_s^3 v^4)$. Fragmentation processes \propto

Direct J/ψ production (Run I) ψ' production (Run I)

At low p_t , non-fragmentation diagrams from other octet matrix elements are important, soft gluon effects cause rates to diverge.

Theory: B Fragmentation functions

Non-perturbative fragmentation functions for B mesons are extracted from LEP data using 3 different parameterizations. Applied to LO and NLO QCD with \overline{MS} factorization. \Rightarrow good agreement with CDF Run I data on B meson cross-section. Using the NRQCD factorization scheme: \Rightarrow good agreement with CDF Run I measurement of J/ψ cross-section from B.

Mary Bishai, FNAL

Run II: $p_t(J/\psi) \sim 1.5 \text{GeV} \Rightarrow p_t(B) \sim 0!$ Extract inclusive b-hadron cross-section from $b \to J/\psi X$ using long b lifetime

The dominant source of lifetime differences between b-flavored hadrons are weak interactions between the b-quark and the light valence quark of the order $16\pi^2(\bar{\Lambda}/m_b)^3 = \mathcal{O}(5-10\%)$ in HQET expansions where $\bar{\Lambda} = M_{H_b} - m_b$. The lifetime difference of b-hadrons therefore tests HQET expansions at the third order.

Expect
$$\frac{\tau(\Lambda_b)}{\tau(B_d)} \sim 0.9$$
 but measure $\frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.78 \pm 0.05$.

Will new NLO QCD calculations explain the difference between theory and expt.?

Backup slides

Tag B flavor at production:.

RUN II $\sin 2\beta$

B_d mixing and measuring $\sin 2\beta$

 $K^+\pi^-$

(a) Lifetime difference between (b) Mixing in wrong sign

CP and non-*CP* final states hadronic decays = oscillations.

DCS

$$y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\tau_{K\pi}}{\tau_{KK,\pi\pi}} - 1$$

 $y < 10^{-5}$

Expectation for 100 pb^{-1} . Belle/BaBar yield = $1M/100fb^{-1}$:

Mode	Yield
$D^0 \to K^- \pi^+$	$1\mathrm{M}$
$D^0 \to K^+ K^-$	100K
$D^0 \to \pi^+ \pi^-$	30K
$D^0 \to K^+ \pi^- (\text{DCS})$	1 K

A_{cp} in $B_s \to J/\psi \phi$ and $B_s \to D_s^+ D_s^-$

Measures weak phase of V_{ts} which is very small in SM. Evidence for anomalous *QP* phases if asymmetry is observed. $B_s \rightarrow D_s^- \pi^+$ is ~ (50:50) CP even and odd, $B_s \rightarrow J/\psi \phi$ is mixed, $B_s \to D_s^+ D_s^-$ is CP even.

Feb '02, Luminosity 1.05 pb

1.95

2.00

KK π mass [GeV]

CDF Run II preliminary

 D^+ , $D_s \rightarrow \phi \pi$, $\phi \rightarrow KK$

1.85

1.90

0.5

20

10

0 1.80

2.05

candidates per 10 MeV/c

25

20

candidate mass, GeV/c