

Recent Results and Prospects for High p_T Physics at DØ Cecilia E. Gerber University of Illinois-Chicago

for the DØ Collaboration

IV International Symposium on LHC Physics and Detectors FERMILAB, MAY 1-3 2003

- New results and prospects for
 - QCD
 - Electroweak
 - Тор
 - Higgs
 - New Phenomena (a sample)
 - Accelerator and detector performance, as well as B physics topics, are covered in separate talks

Jet Production

- \bullet What is the value of α_{s} ?
- How well do we know the proton structure ? PDFs: f(x)
- Is NLO (α_s^3) sufficient?
- Are quarks composite structures?

$$\sigma(\mathbf{p}_1 \overline{\mathbf{p}}_2 \to 2 \text{ jets}) =$$

$$\sum_{abcd} \int dx_1 dx_2 f_{a/A}(x_1) f_{b/B}(x_2) \hat{\sigma}(ab \to cd)$$

- Inclusive Jet Cross Section in the central rapidity region
 - Most basic test of QCD
 - Extraction of $\alpha_{\rm s}$
 - PDFs at high Q^2
 - proton structure at large x
 - test of compositeness
- Dijet Mass Spectrum
 - -Search for resonances

$$\sqrt{S} = 1.96 \text{ TeV}, |\eta| < 0.5$$

JES error (9% at $p_T < 200$ GeV) and Luminosity error (10%) not shown

JES error shown as a band. Luminosity error (10%) not shown

Good agreement between data and NLO QCD

LHC Symposium 5/2/2003

Dijet Mass Cross Section

Good agreement between data and NLO QCD

LHC Symposium 5/2/2003

W/Z production

- $\boldsymbol{\cdot}$ Production dominated by $q\bar{q}$ annihilation
- $\boldsymbol{\cdot}$ Due to very large $p\bar{p}\to jj$ production, need to use leptonic decays
 - (BR ~ 11% (W), ~3% (Z) per mode)

Modifications due to QCD corrections:

- \cdot Boson produced with transverse momentum (< P_{T} > ~ 10 ~GeV)
- \cdot Boson + jet events possible (W + 1 jet ~ 7%, E_{T}^{jet} > 25 GeV)
- Inclusive cross sections larger (K factor ~ 18%)
- Boson decay angular distribution modified

Benefits of studying QCD with W&Z bosons:

- Distinctive event signatures
- Low backgrounds
- Large Q^2 ($Q^2 \sim Mass^2 \sim 6500 \text{ GeV}^2$)
- Well understood Electroweak Vertex
 - C. Gerber (UIC)

W/Z in the electron channel

- 1139 Z \rightarrow ee candidates
 - |η^e|<1.1, E_T>25 GeV, no track match required
- ε(Ζ)≈8%, bkgd ~ 18%

• 27370 W \rightarrow ev candidates • $|\eta^{e}| < 1.1$, $E_{T} \& E_{T} > 25 \text{ GeV}$

• ε(W)≈16%

• bkgd ~ 3% QCD, ~1.5% τ

$\sigma(W)Br(W \rightarrow ev) = 3054 \pm 100(N_w) \pm 86(sys) \pm 305(lumi)$ pb

 $\sigma(Z)Br(Z \rightarrow ee) = 294 \pm 11(N_z) \pm 8(sys) \pm 29(lumi)$ pb

W/Z in the muon channel

- 1585 Z \rightarrow µµ candidates (GeV)
 - |η^μ|<1.6, p_T>15 GeV
- ϵ (Z) \approx 16%, background ~ 1.5%
- Corrected for Z/γ interference

• ε(W)≈13%

• **bkgd ~6%** bb, **9% Ζ, 4%** τ

 σ (W)Br(W $\rightarrow \mu \nu$) = 3226 \pm 128(stat) \pm 100(sys) \pm 323(lumi) pb

 σ (Z)Br(Z $\rightarrow \mu\mu$) = 264 \pm 7(stat) \pm 17(sys) \pm 26(lumi) pb

W/Z Cross Section results

theoretical prediction: C. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343, CTEQ4M PDF

uncertainties dominated by the 10% error on the luminosity

LHC Symposium 5/2/2003

Top Production and Decay

- Top quarks are produced predominantly in pairs via the strong interaction (EW single top prod. not observed yet)
 - x-sec ~7pb (30% increase w.r.t. RunI)

- Decay BR($t \rightarrow Wb$) 100%
- Both W's decay via W→Iv (l=e or μ; 5%) "dilepton"
- One W decays via W→Iv (l=e or μ; 30%) "lepton+jets"
- Both W's decay via W→qq (44%) "all hadronic"

 Seven cross section measurements presented:
 ee, μμ, eμ (dilepton)
 e+j and μ+j (topo & SLT)
 (lepton+jets)

• Work in progress for lifetime tags and mass measurements.

Dilepton (ee,µµ,eµ) Channels

- **Event Selection**
 - Two isolated leptons
 - **€**_⊤
 - ≥ 2 jets
 - $H_T = \Sigma(E^{I_T}, E^{jet_T})$ cut
- Backgrounds •
 - WW, $Z \rightarrow \tau \tau$ (from MC)
 - Z/γ^* , W+jets (from data)

	ee	eμ	μμ
\mathscr{L} (pb ⁻¹)	48	33	43
Total Background	$\textbf{1.00} \pm \textbf{0.49}$	0.07 ± 0.01	0.60 ± 0.30
Expected tt signal	$\textbf{0.25} \pm \textbf{0.02}$	$\textbf{0.50} \pm \textbf{0.01}$	$\textbf{0.3}\pm\textbf{0.04}$
Observed events	4	1	2

DØ Run II preliminary

LHC Symposium 5/2/2003

Lepton + Jets (topological)

- + Veto on soft μ in sample
- QCD background estimated from data
 - Jets (π^0 , γ) faking electrons
 - HF b's appear isolated
- W+jets background in the 4 jet bin estimated from data by Berends scaling law before topological cuts

LHC Symposium 5/2/2003

- Topological Cuts
 - ≥4 jets
 - Aplanarity > 0.06
 - H_T(jets) > 180 GeV (e)
 - H_T(jets+Wp_T) > 220 GeV (μ)

	e+jets	µ+jets
<i>ℒ</i> (pb⁻¹)	50	40
Total Background	2.7 ± 0.6	2.7 ± 1.1
Expected tt signal	1.8	2.4
Observed events	4	4

- Select samples with isolated high p_{T} leptons and large ${{\ensuremath{\mathbb F}}_{\mathsf{T}}}$
- Soft μ within jet
 - b $\rightarrow\mu$, b \rightarrow c $\rightarrow\mu$
- Backgrounds estimated from data

- Softer Topological Cuts
 - -≥3 jets
 - Aplanarity > 0.04
 - $H_T(jets)$ > 110 GeV (e and μ)

	e+jets	µ+jets
ℒ (pb⁻¹)	50	40
Total Background	0.2 ± 0.1	0.7 ± 0.4
Expected t T signal	0.5	0.8
Observed events	2	0

W/Z

Η

Higgs Searches

0000

000

g

t

- Gluon Fusion
 - Overwhelmed by QCD at low mass
 - Good at high mass
- Associated production
 - Good at low mass

 Higgs searches with limited luminosity

q

q

W/Z

 \mathcal{M}

Η

- Backgrounds to the SM Higgs
 W/Z H associated production:
- Study properties of jets in W/Z events
- Develop b-tagging techniques
- Search for non SM Higgs
 - $H \rightarrow WW^* \rightarrow \ell + \ell \nu \nu$
 - $H \rightarrow \gamma \gamma$

- Interesting physics in WW prod. from SM Higgs & extensions that enhance the production x-sec
- Signal: dileptons + \mathbb{E}_{T}
- Bkgd: Z/γ^* , WW, $t\bar{t}$, W/Z + j, QCD
- Opening angle between leptons is useful discriminating variable
 - Two leptons tend to move in parallel due to spin correlation of Higgs boson decay products
- Excluded x-sec together with expectations from SM Higgs production and alternative models.
- Limit will improve with more luminosity and improved object ID

LHC Symposium 5/2/2003

	ee	eμ	μμ
ℒ (pb⁻¹)	44	34	48
Total Background	0.7 ± 1.4	0.9 ± 1.5	0.3 ± 0.1 (stat)
Observed events	0	1	1

- Look for non-SM processes giving $H{\rightarrow}\gamma\gamma$
 - Use the SM $p\bar{p} \to$ H x-sec, but the BR(H $\to \gamma\gamma)$ is assumed 100%
- *L* = 52 pb⁻¹
- Selection requires
 - 2 isolated EM objects (E_T>25 GeV) with no track match
 - γγ mass window cut which selects a region about a hypothesized Higgs mass.
- SM Backgrounds
 - Z/γ^* , QCD

Experimental cross section limits and Theory cross sections as a function of $\gamma\gamma$ mass

Additional statistics will probe High mass region.

Analysis currently being optimized for lower Higgs mass values.

$\gamma \gamma + \not \! E_T SUSY Search$

Motivated by Gauge Mediating SUSY Breaking

- Model has one dimensional parameter $\Lambda,$ which determines the scale of SUSY breaking
- Selection requires ($\mathscr{L} = 42 \text{ pb}^{-1}$)
 - 2 central EM objects (p_T>20 GeV) without a track match
 - Clean jets to ensure $\boldsymbol{\mathbb{E}}_{\mathsf{T}}$ determination
 - Opening angle (∉_T,leading Jet)<2.5 rad
 - ∉_T>30 GeV
- QCD background (dominant) estimated from data

GMSB σ vs Λ CL limits

95% CL limit on lightest neutralino mass >66 GeV, Λ >52TeV

Run I limit m(χ_1^0) >75 GeV (DØ)

LHC Symposium 5/2/2003

σ_{La₂} [pb]

2.5

1.5

0.5

140

160

Data is consistent with SM

for $Br(LQ_1 \rightarrow eq) = 1 m_{LQ1} > 157 GeV$

 1st generation search in the eejj final state (*L* = 43 pb⁻¹)

• 2^{nd} generation search in the $\mu\mu jj$ channel ($\mathscr{L} = 40 \text{ pb}^{-1}$)

 $\beta = BF(LQ_2 \rightarrow \mu j) = 1$

Error Band LO cross section

DØ **Preliminary**

NLO cross section

180

200

M_{LQ}, [GeV]

Search for Large Extra Spatial Dimensions

- String theory with SM restricted to D3-brane, gravity propagating in extra dimensions.
 - Signature arises from virtual graviton diagrams contributing to dilepton and diboson production
- Signatures:
 - ee/yy (combined) and $\mu\mu$, low $earrow_{T}$
- Fit to 2-D distributions in the (M(II), |cosθ*|) space to extract limit on η_G (strength of gravity in the presence of large extra dimensions)
- Results for best fits:
 - di-EM analysis: $\eta_G = 0.0 \pm 0.27 \text{ TeV}^{-4}$ di- μ analysis: $\eta_G = 0.02 \pm 1.35 \text{ TeV}^{-4}$
- Gives 95% CL upper limit on η_G of 0.63 TeV⁻⁴ (diEM) & 2.5 TeV⁻⁴ (μμ)

Translated into 95% CL upper limits for the Planck Scale Ms of 1.12 (diEM) & 0.79 TeV ($\mu\mu$) for the HLZ formalism (n=4)

eµ inclusive final state

Prospects for QCD

UIC

- Test QCD at higher precision
- Input to PDF fits
- Reliable calculation of backgrounds to new physics
- Excellent interaction between experimentalists and phenomenologists

Run I jet data already used in CTEQ6 and MRST2001 parton distribution fits; complements HERA's kinematic range

EW Physics Prospects

- Improved top mass
- Expect ~ 500 b-tagged lepton+jets events per experiment per fb⁻¹
- Improved techniques (equivalent to a factor of 2.4 in statistics)
- Expectations per experiment using "traditional" methods

Δm_t	l + jets	dilepton
2 fb ⁻¹	± 2.7 GeV	± 2.8 GeV
10 fb ⁻¹	± 1.6 GeV	± 1.6 GeV

- Improved W mass
- Expectations per experiment

	Δm_w	
2 fb ⁻¹	±27 MeV	
10 fb ⁻¹	±18 MeV	

LHC Symposium 5/2/2003

Constraint on Higgs

 $dm_H/dm_t \sim 50 \text{ GeV}/4 \text{ GeV}$

$dm_H/dm_W \sim 50 \text{ GeV}/25 \text{ MeV}$

Current Central Values with Δm_W = 20 MeV & Δm_t = 1 GeV

Can exclude SM Higgs with mass below 185 GeV at 95% CL

Direct Searches for Higgs

- Higgs discovery potential at the Tevatron has been evaluated (hep-ph/0010338)
- Joint effort by theorists and both experiments, using a parameterized detector simulation

- To make this a reality, we need
 - Two detectors
 - Good Resolutions
 - Good b-jet and lepton identification
 - Triggers efficient at high luminosities
 - Good understanding of all the backgrounds

CDF and DØ have a joint effort underway to re-evaluate some key channels in this Higgs reach plot. Results by ~ June.

Top physics program

- Single top production
 - So far unobserved
 - Measure $|V_{tb}|$
 - With ~ 1 fb⁻¹ should be able to see signals for both s and t-channel production

	Δσ (s)	$\Delta V_{tb} (s)$	∆σ (t)	$\Delta \mathbf{V}_{tb} (t)$
2 fb ⁻¹	21%	12%	12%	10%
10 fb ⁻¹	9%	6%	5%	8%

- Top-antitop spin correlations
 - With 2fb⁻¹, distinguish spin- $\frac{1}{2}$ from spin-0 (at the 2σ) level
- New physics
 - $\overline{t}t$ mass, top $p_{T},$ rare decays and nonstandard decays, anomalous single top ...

Beyond the SM

SUSY

- most popular extension
- Squark/Gluino searches
 - Jets + E_T
- Chargino/Neutralino searches
 - 3 leptons (very low SM bkgd)

- Many more theories
 - Look for deviations to the SM in specific signatures
 - Follow up anomalies in Run I data, and set modelindependent limits ("Sleuth")

Conclusions

- Many analyses in progress
 - Re-establishing benchmark signals
 - searches already approach Run I limits and will break new grounds soon
- Many more results still to come
 - improved detector understanding
 - improved object ID efficiencies
 - increased statistics
- Tevatron program is rich and promising
- We are enthusiastic about the physics through the end of the decade