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Ideas based on SLD vertex detector (307 M Pixels), extended
to 799 M pixels.

* Physics goals

» Detector design overview

« Layer thickness

* Readout rate; CCD architecture
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Physics Goals

 TeV regime may be characterised by a wide range of SM
and beyond-SM processes, typically with small cross-
sections, many with high multiplicities of heavy-quark jets, eg

e'e” L tt usually 6 jets, two b-flavoured and
two c-flavoured

e'e” - tth usually 8 jets, four b-flavoured

e'e” -~ AH 12 jets, four b-flavoured
* Precision measurements (eg of Higgs branching ratios) can
distinguish between SM and other models.
— Thus, need for highly efficient and pure b and c tags is
evident
 Vertex charge is valuable to distinguish b from b and c
from c

Important for angular anayses eg for

ZZH and ZyH anomalous couplings

* Dipole charge (demonstrated in SLD) can distinguish b from
b even in case of B final state
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The SLD Vertex Detectors

VXD2 | Proc 26™ Int Conf on HEP, Dallas TX (1992)

VXD3 | NIM A400 (1997) 287
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e’e” linear collider will inevitably have high background at small
radii




The future LC vertex detector

» Studies of the Linear Collider Flavour ID collaboration (LCFI)
» Detailed studies in context of TESLA detector:
* R,, =14 mm and 4 Tesla solenoid

- L1 active length 10 cm

- 3-hit coverage to cosd =0.96

Cos 6=0.96

Striplines

1- CCD Ladders \
2. cCD Ladders Foam Cryostat
1

1 1 1 1
T T T T T
-20 -10 0 10 20
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Ladders

Barrel 1 Barrel 2-5
L=100mm L =250mm
Gasket seal

Beam-Pipe
Stripline

Foam Cryostat —~_—»

and Faraday Cage
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SLD & Future LC Detector

Properties
Detector VXD2 VXD3 Future LC
CCDs 480 96 120
CCD active area (cm?) | 1.2 12.8 27.5
Number of pixels (x10°) |120 307 799
Effective no. of layers 2 3 5
Inner layer radius (mm) | 28 28 15
Layer thickness (% X,) |1.1 0.4 0.06
(cos@),,., (2-hit) 0.75 0.90 0.96
Imp. param resoln.
(o8 110 70/psin?@ | 9033/psin26 |3.5012/psinz6
g, 38 070/psin26 | 17033/psin?0 | 3.5012/psin26
Readout time 160 ms 216 ms 50/250 us
(8 ms for NLC)

CJSD/LCWS2000/October 2000/pg7




Layer Thickness

« Currently pushing the ‘unsupported silicon’ option

Scales (mm)

» Results with thin glass CCD models are most encouraging
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« Assisted by the strong technology evolving for PTPs (paper-
thin packages)
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* 0.06% X,/layer would be excellent, but this imposes
pressure on the beampipe thickness

Lower
Beryllium
Upper support
Beryllium shell
support

shell
Beam-Pipe

Stripline

Foam Cryostat
and Faraday Cage —

* 0.07% X, may be possible (0.25 mm beryllium), by using the
VXD support shell for strain relief
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» Layer 1-3 provide first class coverage to cos8 =0.96
¢ <1% X, total
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Readout Rate/CCD Architecture

NLC: 190 %120 = 22.8 x10° bunches/s

TESLA: 2820x5 = 14.1x10° bunches/s
Luminosity and background per bunch are similar.

NLC: CCD readout in 8 ms between bunch trains provides
adequate background control

TESLA: 15 times more luminosity per train, so need to read
repeatedly during each train of 950 us

— Concept of column-parallel readout in 50 ws, which is
interesting for other CCD application areas.

[An earlier option of fast clear, fast trigger and kicker magnet to

kil the bgd was excluded by GMSB and other subtle
signatures: the LC DAQ must run in an untriggered mode.]
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Readout IC

7
,,,,,,

\ Solder bump

Beryllium Bond pad
substrate

« Maybe no-reset output with resistive load

« Single row of staggered bump bonds follows standard
industrial practice

« Goal is 50 MHz parallel clocking with 1-3 V drive voltages

— what implications for on-CCD buslines, in-detector
cooling?

 Signal processing well-matched to 0.25 ym processing.

Much can be learned from CMOS active pixel imaging
devices

ON-CHIP ADC ARCHITECTURES Photobit

A
Al

Digitized
in pixel Serial ADC(s) ﬂ
at data rate Column Column
parallel parallel
ADCs ADCs
Multiplexed Parallel

output output ports
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Initial studies based on 3-phase clocking
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However, the LC lends itself to 2-phase sinusoidal operation,
starting slightly before the bunch train
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Latest estimates:

In detector power dissipation = 9 Watts!

- avery gentle flow of cooling gas

[Ladder ends will need more aggressive cooling: ‘no problem’.]
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Readout IC
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« Background occupancy 5.9 hits/mm? (layer 1) to
0.6 hits/mm?* (layer 5)

- ~ 2.6x10° hits/train

- 15 MB stored on detector during train and read out to a
selected available processor between trains

- a few optical fibres each end
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Conclusions

* We have about 5 years of R&D before technology choices
need to be made

« CCDs, while promising, could run up against show stoppers
such as:

present goals achieved too late or not at all
manufacturers losing interest
radiation environment (specially neutrons)

» For all options, CCDs, hybrid pixels and CMOS pixels,
iImportant to push hard. Much scope for development;
physics prizes could be immense

» All these technologies are in demand for many applications.

Developments are likely to make brisk progress into the
distant future, independent of HEP community

« The preferred technology may well change during the life of
the collider

« Therefore vital to ensure convenient access to the inner
detector, in order to permit instrumentation upgrades (vertex
detector, beamsize monitor, beam position monitors) every
few years.
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