Facility Evolution

Shigeki Misawa RHIC Computing Facility Brookhaven National Laboratory

Change Drivers at the Facility

- Users
- Component Costs
- Technology
- Security
- Operational Experience

User Desires

- Unlimited on line storage space
- Uniform, global file namespace
- Infinite file system bandwidth
- Unlimited I/O transaction rates
- Infinite processing power
- No learning curve
- High availability
- \$0 cost

Current Configuration

Current Configuration (cont'd)

- HPSS managed tape archive
 - 10 IBM Server
 - 9840/9940 tape drives
- NFS Servers
 - 14 E450
 - 5 V480
 - 100TB RAID5
 - MTI and Zyzzx(CMD)
 - Brocade SAN

- GigE Backbone
 - Alcatel (PacketEngine)
 - Cisco
 - Alteon (phased out)
 - SysKonnect NIC
- ~1000 Dual CPU Linux nodes w/local scratch
- 2 AFS Cells
 - IBM AFS 3.6.x

Current Configuration (cont'd)

- Secure Gateways
 - Ssh/bbftp
- Facility Firewall
- Software for optimized file retrieval from HPSS
- Custom and LFS batch control

- Limited management of NFS/local scratch space
- Other experiment specific middle-ware

Matching User Desires

- HPSS provides near infinite storage space, although not on line
- NFS provides large amounts of on line storage, uniform, global namespace
- Linux Farm provides significant amount of processing power.
- Relatively low cost

- Issues
 - High bandwidth ?
 - Transaction rate ?
 - High availability ?
 - Learning curve ?

User Processing Models

- Reconstruction
 - Processing models among users are similar
 - Processing is well defined
- Analysis
 - Wide range of processing styles in use
 - Transitioning to finite set of processing models difficult to institute.
 - Requires high level experiment acceptance
 - Requires adoption of processing models by individual users

Security Perspective

- Facility Firewall
- On and Off site considered hostile
- Gateways (ssh, bbftp) bypass FW, provide access with no clear text passwords
- Exposure is getting smaller

- Management and monitoring getting better
- Primary vulnerablities
 - User lifecycle management
 - Reusable passwords
 - Distributed file system

Changes affecting security

- Rigorous DOE mandated user life cycle management
- Kerberos 5 and LDAP authorization/authentication
- Tighter network security (inbound/outbound access)
- Grid integration
 - Web services
 - Grid daemons
 - Deployment vs maintenance

HPSS

- Provides virtually unlimited storage ability
- Pftp access inconvenient and can be problematic
- General user access to HSI, a good thing ?
- Work arounds
 - Limit direct access
 - Identify and eliminate problematic access
 - Utilize optimization tools
- Prognosis:
 - Good enough, too much invested to switch

Gigabit/100Mb Ethernet

- GigE not a performance issue
 - Driving it is another question
- GigE port/switch costs an issue
- Vendor shake out somewhat of an issue
- Mix of copper/optical technology a nuisance
- 100Mb compute node connectivity sufficient for the forseeable future

Linux Farm

- Adequately provides needed processing power
- Split between pure batch and batch/interactive nodes
- Nodes originally disk light, now disk heavy
 - Cheaper (\$/MB) than RAID 5 NFS disk
 - Better performance
 - Robust with respect to NFS/HPSS hiccups
 - Changing processing model

Linux Farm Limitation

- Individual nodes are now mission critical (since they are stateful)
- Maintenance an issue (HD must be easily swappable)
- Nodes no longer identical
- Node lifecycle problematic
- Local disk space management issues
- Non global namespace and access to data
- EOL of CPU vs EOL of Disk

NFS Servers

- Providing relatively large amounts of storage (~100TB)
- Availability and reliability getting better
 - Servers not a problem
 - Problems with all disk components, RAID controllers, hubs, cables, disk drives, GBICs, configuration tools, monitoring tools, switch,
- Overloaded servers are now the primary problem

NFS Servers

- 4x450MHz E-450, 2x900MHz V480 (coming on line soon)
- SysKonnect GigE NIC (Jumbo/non-jumbo)
- MTI and Zyzzx RAID 5 storage
- Brocade Fabric
- Veritas VxFS/VxVM

Performance of NFS Servers

- Maximum observed BW 55 MB/sec (non jumbo)
- NFS Logging recently enabled (and then disabled)
 - Variable access patterns
 - 1.4TB/day max observed BW out of a server
 - Max MB transferred usually, not the most highly accessed
 - Data files accessed, but shared libraries and log files are also accessed.
 - Limited statistics makes further conclusions difficult to make
- NFS Servers and disks are poorly utilized

NFS Logging (Solaris)

- Potentially a useful tool
- Webalizer used to analyze resulting log files
 - Daily stats on 'hits' and KB transferred
 - Time, client, and file distributions
- Poor implementation
 - Generation of binary/text log files problematic
 - Busy FS -> observed 10MB/minute, 1-2 GB/hour log write rate
 - Under high load, nfslogd cannot keep up with binary file generation
 - nfslogd unable to analyze binary log files > 1.5 GB
 - nfslogd cannot be run offline

NFS Optimization

- Without usage statistics cannot tune
 - File access statistics
 - Space usage
 - I/O transactions/FS
 - BW / FS
- Loosely organized user community makes tracking and controlling of user behavior difficult

Future Directions for NFS Servers

- Continued expansion of current architecture
 - Current plan
- Replace with fully distributed disks
 - Needs middleware (from grid?) to manage. Can users be taught to use the system ?
- Fewer but more capable servers (i.e., bigger SMP servers)
 - Not likely (\$cost)
 - Will performance increase ?

Future Directions for NFS Servers

- More, cheaper NFS appliances
 - Currently not likely (administrative issues)
- IDE RAID systems ?
 - Technological maturity/administrative issues
- Specialized CIF/NFS servers ?
 - Cost/technological maturity/administrative issues
- Other file system technologies ?
 - Cost/technological maturity/administrative issue

AFS Servers

- Current State
 - 2 AFS Cells
 - IBM AFS 3.6.x
 - ~12 Servers
- System working adequately

- Future direction
 - Transition to OpenAFS
 - Transition to Kerberos 5
 - AFS home directories ?
 - LSF/Grid integration ?
 - Security issues ?
 - Linux file servers ?
 - Stability
 - Backups

Grid Integration

- Satisfying DOE cyber security requirements
- Integration of Grid authentication and authorization with site authentication and authorization
- Stateful grid computing, difficult issues
- Stateless grid computing, not palatable to users
- Transition from site cluster to grid enabled cluster can be achieved in may ways with different tradeoffs.

Future direction issues

- Current facility implements mainstream technologies, although on a large scale.
- Current infrastructure is showing the limitations of using these technologies at a large scale.
- Future direction involves deploying non-mainstream (though relatively mature) technologies or immature technologies in a production environment.
- As a complication, some of these new technologies replace existing mature systems that are currently deployed.