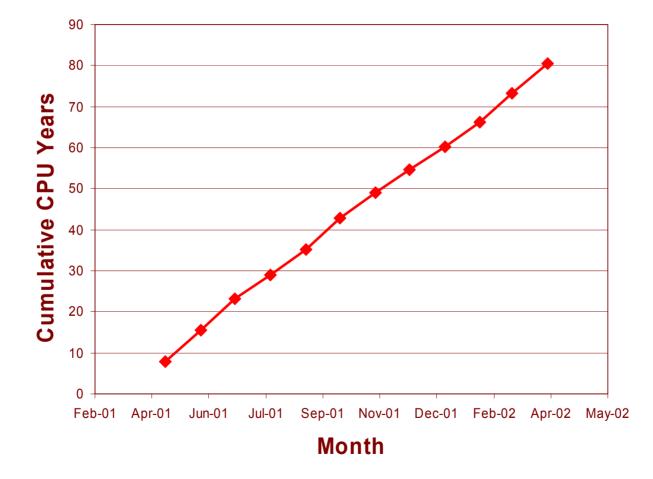


VAnderbilt Multi-Processor Integrated Research Engine

Alan Tackett

Mathew Binkley Bobby Brown


VAMPIRE

VAnderbilt Multi-Processor Integrated Research Engine

- VAMPIRE was conceived and created by Vanderbilt researchers in biology and physics:
 - Paul Sheldon, Physics
 - Will Johns, Physics
 - Jason Moore, Human Genetics
- It is maintained, operated, and governed by Vanderbilt faculty as a research tool responsive to the needs of their programs

- 55 compute nodes (110 processors)
 - 2U case
 - Tyan S1823DL motherboard with BX chipset
 - Dual 600MHz P3 Processors
 - 256MB memory
 - 10G disk
 - Fast ethernet
- Disk Server (700 GB)
 - 4U case with 16 hot svap IDE bays
 - SuperMicro P3TDLE motherboard with Serverworks III LE chipset
 - Dual 933MHz P3 processors
 - 1GB of memory
 - 3ware 7850 RAID5 Controller
 - Eight 100GB Maxtor DiamondMax 7200 RPM IDE drives
 - Raw sustained performance: 57MB/s for writes and 120MB/s for reads

Cluster Usage

VAMPIRE Users

- 70+ users
- 13 Different departments
 - Physics and Astronomy, Biostatistics, Molecular Physiology and Biophysics, Structural biology, Mechanical Engineering, Electrical Engineering and Computer Science, Biochemistry, Psychology, Pharmocology, Psychiatry, Chemistry, Microbiology
- 3 different Universities
 - Vanderbilt, Univ or Colorado Health Sciences, Meharry Medical College

Applied Scientific Computing Class Greg Walker (ME) and Alan Tackett (Physics)

- Purpose: Applying HPC to *actual* research projects. Not toy problems.
- Each student is working jointly with a faculty member on a current research project.
- Graduate level class with 11 students (4 A&S, 7 Engineering)
- Projects:
 - Molecular dynamics (Cummings CE)
 - Radiation effects on Semiconductors (Weller EECS)
 - Nuclear Physics (Oberacker, Umar, and Ernst Physics)
 - Gene Mining (Moore, Human Genetics)
 - Brain Activation Centers (Psychiatry)
 - Web server load balancing (Barnes EECS)
 - Elastography (Miga BME)
 - Ion Strike (Walker ME)

Diverse Applications

- Run the gamut from
 - Serial jobs. But lots of them!
 - High Energy and Nuclear Physics
 - Small/medium parallel jobs requiring 2-20 CPU's
 - Requires high-performance network
 - Amber(MD, Protein), Human Genetics apps, VASP
 - Large parallel ASCI jobs using 10-512 CPU's
 - Requires high-performance network
 - Socorro(Condensed Matter Physics)
 - 16 CPU run: 600s with Fast Ethernet vs. 4 sec with Myrinet

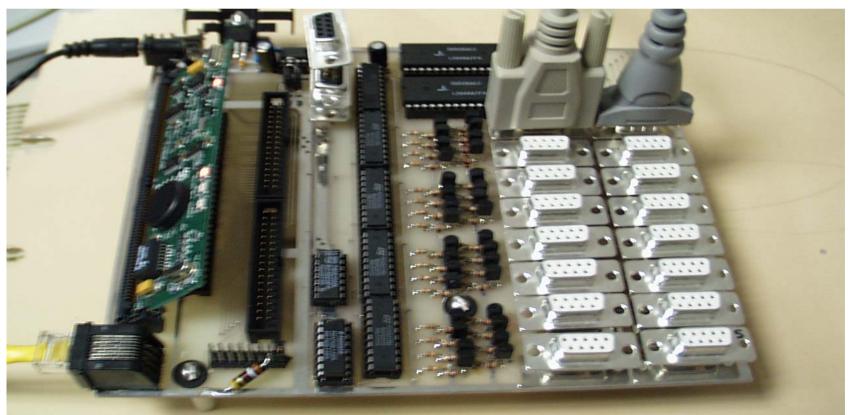
Software Libraries

- Because of diverse user group there is a diverse group of software installed
 - Libraries: ATLAS/BLAS, LAPACK, FFTW, PETSc, DAKOTA, Matlab, Netsolve, IBP, MPICH, PVM
 - Compilers: Multiple gcc versions supported, Intel C/C++/F95, Absoft F77/F95
- Users not capable of building these packages. In fact they may not even know they exist!
- Most need to be compiled locally for performance

Administration

- SystemImager (http://systemimager.org)
 - Propagates updates, wipes and re-installs
 - Allows us to perform a complete wipe and re-install of the entire system in 30 minutes. Scalable to 1000's of nodes.
 - Only propagates changes so minor changes take just a few minutes
- Nagios(formerly Netsaint)/Ganglia
 - http://www.nagios.org
 - Health monitoring with automatic service restart and SysAdmin emailing and paging if needed.
- PBS/Maui
 - Batch Scheduler and Resource Manager
- Misc Scripts
 - Pexec Parallel execution and file copy written locally

Resource Sharing with Maui¹


- Provides each group *on average* their appropriate fair share of the cluster
- Supports advanced reservations,
 - Serial and parallel jobs,
 - Node attributes for special hardware or apps
- Configurable Job priority based on
 - Group, user, account, QoS, number of CPU's, execution time, etc.
- Shortpool Queue for interactive debugging of jobs and short jobs
- Showbf command

¹http://www.supercluster.org/

Remote Access Control

- Terminal Server designed by Will Johns

 Cost \$10/port
- Supports Power On/Off and Reboot
- Based on TINI board
- Still need to provide finishing touches on interface

Proposed Scientific Computing Center (SCC)

- Centralized computational Cluster (1000 nodes) for Large-scale applications
- Smaller specialized clusters located in faculty research labs
- 50TB disk array using a parallel file system
- Expandable backup facility capable of handling Petabytes of data

Which CPU? P4 or Athlon

- Athlon 10-20% faster on some apps
 - Best for apps compiled for P3, integer math, or compiled using g77
- P4 2x faster on apps making heavy use of double precision BLAS
 - SSE2 provides SIMD instructions for double precision
- Chipset also makes a difference

Application Benchmarks

Amber	Secs	Memory Bandwidth (MB/s)	L1	L2	Main
P3-1GHz/LE / g77-2.96	2364	P4-1.8/GC	14727	12564	1049
300MHz O2k	2118	P4-1.8/E7500	14720	12552	1114
P4-1.8/E7500 / g77-2.96	2063	Athlon-1.8	10992	3648	864
P4-1.8/E7500 / g77-3.2	1772	P3-1GHz / 440BX	9770	4429	309
P4-1.8/GC / g77-3.2	1743				
Athlon-1.4 / g77-2.96	1556				
Athlon-1.8 / g77-2.96	1210				
P4-1.8/E7500 / ifc6	805				
P4-1.8/GC / ifc6	773				
Socorro	Secs				
P4-1.8/E7500 / ifc6	1689				
P4-1.8/GC / ifc6	1209				

Disk Benchmarks

Disk Server Configuration

- Dual P4 system
- 16 Maxtor 160GB IDE
- Dual 3ware 7850 controllers
- Each controller is configured as RAID5 with software Striping
- 2.25TB of disk space
- XFS File system

Bonnie++

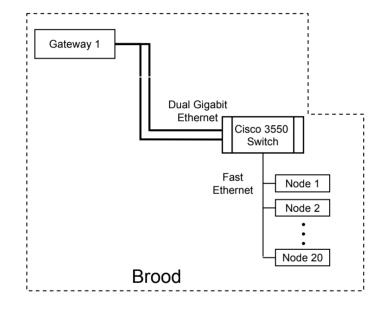
Version 1.02c -----Sequential Output-------Per Chr- --Block-- -Rewrite-Machine Size K/sec %CP K/sec %CP K/sec %CP Inner Mount 4G 20851 88 83647 27 82919 37

--Sequential Input- --Random--Per Chr- --Block-- --Seeks--K/sec %CP K/sec %CP /sec %CP 23294 97 **246939** 52 270.5 1

Immediate Expansion Plans

Grass roots effort with all money from individual researchers

- 110TB Backup Server (just arrived)
 - Quantum ATL P7000 Tape Library
 - SDLT 320 Drives
 - Expandable to over 500TB
 - Supporters from Psychiatry, Physics, Ingram Cancer, Human Genetics, Struct. Biology, Medical Imaging Center



- ~200 additional VAMPIRE compute nodes (IBM x335)
 - Serverworks GC-LE Chipset (>25% faster than Intel E7500)
 - Dual 2. 0GHz P4 Xeon
 - 1G of ECC DDR-266 memory
 - Myrinet 2000
 - Dual Gigabit Ethernet
 - Supporters from EECS, BME, CE, ME, and Physics
- 2 small compute clusters
 - M. Miga (BME) and J. Moore (Human Genetics)

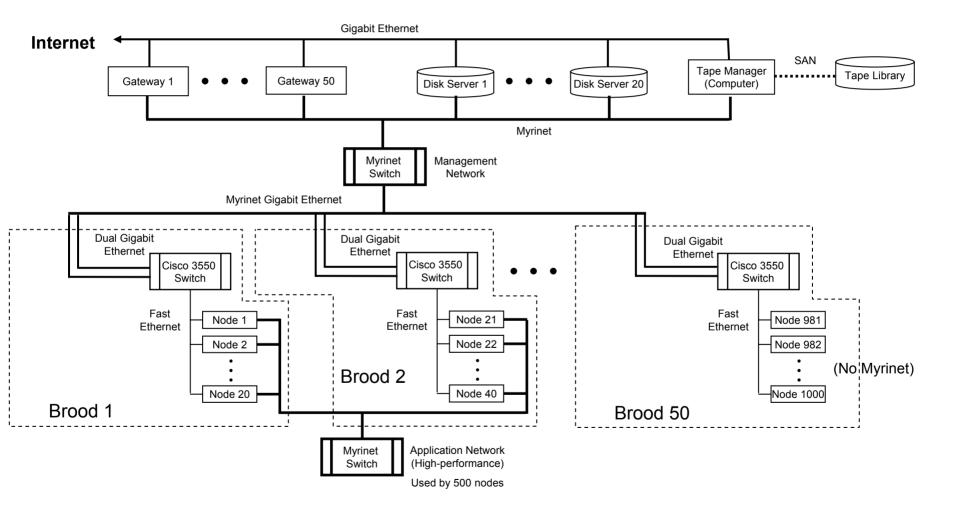
xSeries 335 overview

IBM *(e*) server xSeries

Brood Fundamental Building Block

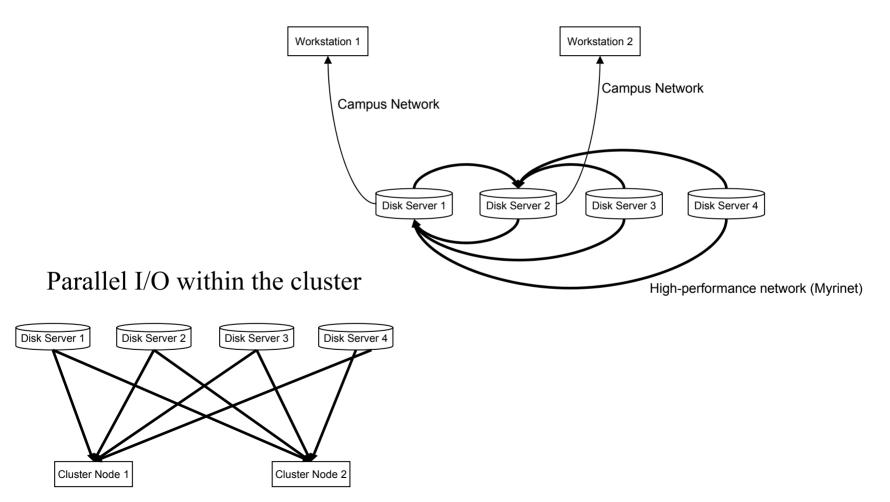
Brood Configuration

- Gateway
- Switch
- •20 or more compute nodes


•Gateway responsible for

- •Health monitoring
- •Updates and Installs
- Compute Nodes DHCP service
- •Exporting of /usr/local to nodes

•Brood Flexibility


- •Complete Mini-Cluster
- •Can be segregated from the main cluster for users specialized needs.
 - •Testing special hardware, kernels, different OS's, apps
- •Easily reintegrated with larger cluster using SystemImager

Scientific Computing Center using Myrinet + GigE Gateways and Disk Servers also function as Management Nodes

Parallel Filesystem Access

Parallel I/O outside the cluster using load-balancing

Summary

- VAMPIRE is a multidisciplinary cluster
- Currently adding 110TB tape backup and ~200 compute nodes
- Future expansion next year to add an additionaly 1000 nodes ands 50TB of disk space.