

# Welcome to Fermilab Large Scale Cluster Computing Workshop May 22-25, 2001 Matthias Kasemann

May 22, 2001

LCCWS

## The Fermilab Scientific Program



#### **Physics of the Weak Energy Scale**

- Look for Supersymmetry.
- Make precise measurements of t and W mass.
- Measure  $B_s$  mixing, CP parameters.
- Search for Higgs with increasing luminosity.

#### **Neutrino Masses and Mixing**

- Study atmospheric neutrino range with MINOS.
- Make a definitive check of the LSND with MiniBoone.

#### **Particle Astrophysics**

- Search for dark matter with CDMS.
- Study highest energy cosmic rays with Auger.
- Discover new astro sources with Sloan Digital Sky Survey.

#### Fermilab HEP Program





## World-wide Collaborations at Fermilab



- 2,716 Physicists work at Fermilab
- 224 institutions from:
  - 38 states (1,703 physicists)
  - 23 foreign countries (1,014 physicists)
- 555 graduate students
- (probably a similar number of postdocs)
- It is interesting to note that only 10% of CDF and D0 physicists work for Fermilab

Status: 1999



The CDF Collaboration consists of 490 physicists from 41 institutions representing 8 countries

## CMS Computing Challenges



- Experiment in preparation at CERN/Switzerland
- Strong US participation: ~20%
- Startup: by 2005/2006, will run for 15+ years



Major challenges associated with: Communication and collaboration at a distance Distributed computing resources Remote software development and physics analysis R&D: New Forms of Distributed Systems

#### CMS Computing Solution: A Data Grid



- Deploy computing resources as hierarchical grid
  - Tier 0  $\Rightarrow$  Central laboratory computing resources (CERN)
  - Tier 1  $\Rightarrow$  National center (Fermilab / BNL, other countries)
  - Tier 2  $\Rightarrow$  Regional computing center (university)
  - Tier 3  $\Rightarrow$  University group computing resources
  - Tier 4  $\Rightarrow$  Individual workstation/CPU
- We call this arrangement a "<u>Data Grid</u>" to reflect the overwhelming role that data plays in deployment
- LHC data volume / Current experiments: factor 2-4
  - ◆ CDF: ~ 450 TB/year
  - Compass: ~ 300 TB/year of RAW data
  - STAR: ~ 200 TB/year of RAW data



#### "Run 2 Science: The hunt is on" FermiNews, Vol 24, March 2, 2001



- Run 2: A long run starts in 2001.
  - Further upgrades will continue increasing the luminosity. They require a **big** effort.



## Run 2a: Data Flows





May 22, 2001

LCCWS

## Run 2a Data Volumes



#### (estimates, from 1997 planning)

| Category               | Parameter            | D0               | CDF            |
|------------------------|----------------------|------------------|----------------|
| DAQ rates              | Peak rate            | 53 Hz            | 75 Hz          |
|                        | Avg. evt. Size       | 250 KB           | 250 KB         |
|                        | Level 2 output       | 1000 Hz          | 300 Hz         |
|                        | maximum log rate     | Scalable         | 80 BM/s        |
| Data storage           | # of events          | 600M/year        | 900 M/year     |
|                        | RAW data             | 150 TB/year      | 250 TB/year    |
|                        | Reconstructed data   | 75 TB/year       | 135 TB/year    |
|                        | tier                 |                  |                |
|                        | Physics analysis     | 50 TB/year       | 79 TB/year     |
|                        | Micro summary        | 3 TB/year        | -              |
| CPU                    | Reconstr/event       | 25 - 65 SI95xsec | 30 SI95xsec    |
|                        | Total Reconstruction | 2000-4000 SI95   | 2000-4000 SI95 |
|                        | Analysis             | 2000-4000 SI95   | 2000-4000 SI95 |
| Access for<br>analysis | # of scientists      | 400 - 500        | 400 - 500      |

May 22, 2001

#### Run 2a Equipment Spending Profile



#### (Total for both CDF & D0 experiments)

- Mass storage: robotics, tape drives + interface computing.
- Production farms
- Analysis computers: support for many users for high statistics analysis (single system image, multi-CPU).
- Disk storage: permanent storage for frequently accessed data, staging pool for data stored on tape.
- Miscellaneous: networking, infrastructure, ...

| Fiscal Year    | MSS    | Farms  | Analysis       | Disk   | Misc   | Total (both) |
|----------------|--------|--------|----------------|--------|--------|--------------|
| Spent in FY98  | \$1.2M | \$200K | -              | \$200K | \$400K | \$2M         |
| Spent in FY99  | \$2.2M | \$700K | \$2M           | \$800K | \$300K | \$6M         |
| Spent in FY00  | \$450K | \$350K | \$100K         | \$300K | \$800K | \$2M         |
| Budget FY01    | \$450K | \$350K | <b>\$2.14M</b> | \$690K | \$70K  | \$4M         |
| Plan for FY02  | \$500K | \$1.2M | <b>\$2.16M</b> | \$610K | \$30K  | \$4.2M       |
| Total Needs    | \$4.8M | \$2.8M | \$6.4M         | \$2.6M | \$1.6M | \$18.2M      |
|                |        |        |                |        |        |              |
| Continuing Ope | \$2M   |        |                |        |        |              |

May 22, 2001

## RUN 2a Equipment



- Analysis servers, going from 30% to 60% of full systems:
  - D0 delivered, CDF purchase in progress
- Disk storage (65% of full system)
- Robots with tape drives





## Status of CDF/D0 Farms

- 88+97 PC's are in place.
  - 48+47 PIII/500 duals
  - 40+53 PIII/750 or 800 duals
- 60 more PC's are on order (PIII/1 GHz duals)
- I/O nodes are ready.
- Integration and testing of the system is complete.
  - 20 Mbytes/sec can be achieved.
- The CDF system is being used to process and reprocess data from the commissioning run
  - about 1.3 Tbytes taken in October, 2000
  - both systems are used to generate and reconstruct simulated data.

Both are ready and used for raw data reconstruction.

## **D0** Computing System



#### Proposed D0 Analysis Computing Configuration



## DO data handling: SAM – Grid enabled



#### **Fermilab Stations**

Central Analysis

**Online** 

**♦Farm** 

Linux analysis stations (3)

#### **<u>Remote Stations</u>**

◆Lyon (IN2P3)

**Amsterdam**(NIKHEF)

**♦Lancaster** 

**♦**Prague

Michigan State

**•U. T. Arlington** 

May 22, 2001



#### Since time began (for Run2): ~100M events ~120M files ~20 TBytes

## **CDF:** Performance Milestones





- Mock Data Challenge II May-July 2000.
  - Rate test of system: 12 MB/s.
    - Limited by hardware availability.
  - Single components: 20 MB/s.
- Commissioning: October 2k
  - Recorded 10 million events.
  - Logged 3 TB of data to tape.
  - Reconstructed data on farms.
    - ◆ 1<sup>st</sup> pass with Calorimetry & COT
    - 2<sup>nd</sup> pass with SVX & Database
      - 3 s/evt reco (debug & non-opt)
- Start of Run2: March 1
  - Start of physics data taking: ~June 1

#### **CDF** Commissioning Run Data



- Functioning tracking (e.g. reconstructed  $\Lambda \rightarrow p\pi$  below).
- Functioning calorimetry (e.g. event with two 200 GeV iets below).





- First Run 2b costs estimates based on scaling arguments
  - Use predicted luminosity profile
  - Assume technology advance (Moore's law)
  - CPU and data storage requirements both scale with data volume stored
- Will be able to refine estimates after 1 year of Run 2a experience
- Data volume depends on physics selection in trigger
  - ◆ Can vary between 1 8 PB (Run 2a: 1 PB) per experiment
- Have to start preparation by 2002/2003

## LCCWS: Cluster computing now



- Large compute clusters are reality and used now in HEP
  - For raw data and Monte Carlo production
  - For accelerator calculations
  - For theoretical physics calculations (Lattice QCD, ...)
  - Particle Astrophysics Data processing
- Cluster computing is an obvious solution when
  - ratio of CPU/IO-bandwidth is high
  - Parallel computing can benefit from granularity of events
  - Cross-node communication requirements are low
  - Resource allocation is easy
    - Within one group or tightly managed otherwise

## Cluster Computing: Some Questions (1)



- Should or can clusters emulate a mainframe?
  - Resource allocation, Accounting, Monitoring
  - single vs. heterogeneous environment
  - System administration
- How much can the compute models be adjusted to make most efficient use of cluster computing?
- Were is it more cost-efficient <u>not</u> to use cluster computing?
- What is the total cost of ownership for clusters?
- How can a cluster be build based on incidental use of desktop resources (à la <u>seti@home</u>)?

Cluster Computing: Some Questions (2)



- How to use clusters for applications with high I/O requirements?
  - Implications on data model
  - Implications on data access methods
  - I/O bandwidth and latency requirements and solutions
  - Is there a break-even point?
- How to design clusters for high-availability requirements?

Compute clusters: the next steps



• We are facing the same challenge at different labs:

How to get the most computing for the least \$\$?

- Lets share our experience...
- Lets exchange ideas...
- Can we share solutions?
- How to entertain joined projects?
- That is why we are here....

#### Welcome !!

- We need to do global computing for global experiments
  - Grid computing and data distribution is addressing this
  - Not to forget operational aspects...

#### At last: The Weather



🗿 Chicago Tribune | News - Weather - Microsoft Internet Explorer - 🗆 × File Edit View Favorites Tools Help >> 4  $\otimes$ \$ 0 \* 63 ŝ Forward Stop Refresh Back Home Search Favorites History 2 GO Address 🔄 http://www.weatherpoint.com/ct/ -Links . **TOM SKILLING'S 7-DAY FORECAST** TOMORROW TODAY 58/42 56/44 Cool, 12 degrees below normal. Scattered low-Unseasonably cool-16 degrees coverage, light showers below normal. Cloudy, scattered develop into the evening. sprinkles or gusty passing showers during the day. SUNDAY SATURDAY MONDAY 55/43 59/45 73/56 65/48 Cloudy, periods Cloudy, remaining A gray, possibly Breaks for Partly sunny. of rain possible. cool for the showery day. sunshine, modest warmer, drier Cool readings season. Some Most precipitation warming by northwest continue. passing glimpses in the late afternoon. winds. of sun can't be morning and Several widely scattered ruled out afternoon Continued cool. showers possible. Done Internet

#### The weather will be ideal for good workshop working conditions *it will rain....;-(*

May 22, 2001

LCCWS