
Bebo White
bebo@slac.stanford.edu

Introduction to XML

InterLab 2006
FermiLab

October 2006

Tutorial DescriptionTutorial Description

With your HTML knowledge, you have a solid
foundation for working with markup languages.
However, unlike HTML, XML is more flexible,
allowing for custom tag creation. This course
introduces the fundamentals of XML and its
related technologies so that you can create your
own markup language.

Topics*Topics*
• XML well-formed documents
• Validation concepts
• DTD syntax and constructs
• W3C Schema syntax and constructs
• XSL(T) syntax and processing
• XPath addressing language
• Development and design considerations
• XML processing model
• XML development and processing tools

• XML well-formed documents
• Validation concepts
• DTD syntax and constructs
• W3C Schema syntax and constructs
• XSL(T) syntax and processing
• XPath addressing language
• Development and design considerations
• XML processing model
• XML development and processing tools

* Tutorial plus references

What Is Markup?What Is Markup?
• Information added to a text to make its structure

comprehensible
• Pre-computer markup (punctuational and

presentational)
• Word divisions
• Punctuation
• Copy-editor and typesetters marks
• Formatting conventions

• Information added to a text to make its structure
comprehensible

• Pre-computer markup (punctuational and
presentational)
• Word divisions
• Punctuation
• Copy-editor and typesetters marks
• Formatting conventions

Computer Markup (1/3)Computer Markup (1/3)
• Any kind of codes added to a document

• Typesetting (presentational markup)
• Macros embedded in ASCII
• Commands to define the layout
• MS Word, TeX, RTF, Scribe, Script, nroff, etc.

• *Hello* Hello
• /Hello/ Hello

• Declarative markup
• HTML (sometimes)
• XML

• Any kind of codes added to a document
• Typesetting (presentational markup)

• Macros embedded in ASCII
• Commands to define the layout
• MS Word, TeX, RTF, Scribe, Script, nroff, etc.

• *Hello* Hello
• /Hello/ Hello

• Declarative markup
• HTML (sometimes)
• XML

Computer Markup (2/3)Computer Markup (2/3)
• Declarative markup (cont)

• Names and structure
• Framework for indirection
• Finer level of detail (most human-legible signals are

overloaded)
• Independent of presentation (abstract)
• Often called “semantic”

• Declarative markup (cont)
• Names and structure
• Framework for indirection
• Finer level of detail (most human-legible signals are

overloaded)
• Independent of presentation (abstract)
• Often called “semantic”

Computer Markup (3/3)Computer Markup (3/3)
• Semantic Markup

• Authors put annotations into their texts to help the
publisher to understand what type of text this is (e.g.
“this is a heading”)

• Annotations are agreed between author and publisher
• Publisher decides on the layout

• Descriptive markup
• Describing content not the layout

• Markup to support search in documents
• Words in headings are more important than in footnotes
• Markup for machines vs. markup for humans

• Semantic Markup
• Authors put annotations into their texts to help the

publisher to understand what type of text this is (e.g.
“this is a heading”)

• Annotations are agreed between author and publisher
• Publisher decides on the layout

• Descriptive markup
• Describing content not the layout

• Markup to support search in documents
• Words in headings are more important than in footnotes
• Markup for machines vs. markup for humans

Markup – ISO-DefinitionsMarkup – ISO-Definitions
• Markup – Text that is added to the data of a

document in order to convey information about it
• Descriptive Markup – Markup that describes

the structure and other attributes of a document
in a non-system-specific way, independently of
any processing that may be performed on it

• Processing Instruction (PI) – Markup
consisting of system-specific data that controls
how a document is to be processed

• Markup – Text that is added to the data of a
document in order to convey information about it

• Descriptive Markup – Markup that describes
the structure and other attributes of a document
in a non-system-specific way, independently of
any processing that may be performed on it

• Processing Instruction (PI) – Markup
consisting of system-specific data that controls
how a document is to be processed

Markup Language FeaturesMarkup Language Features
• Stylistic (appearance)

• <I><U>
• Structural (layout)

• <P>
<H2>
• Semantic (meaning)

• <TITLE>
• <META NAME=keywords CONTENT = " …... " >

• Functional (action)
• <BLINK>
• Click here

• Stylistic (appearance)
• <I><U>

• Structural (layout)
• <P>
<H2>

• Semantic (meaning)
• <TITLE>
• <META NAME=keywords CONTENT = " …... " >

• Functional (action)
• <BLINK>
• Click here

Hypertext Markup
Language (HTML)

Hypertext Markup LanguageHypertext Markup Language
• HTML – The Markup Language used to represent

Web pages for viewing by people
• Rendered and viewed in a Web Browser
• Not extensible

• Documents
• Easy to write – Markup your data with tags
• Platform independent
• Can contain links to Images, documents,

and other pages
• HTML is an application/instance of SGML

(Standard Generalized Markup Language, ISO 8879:1986 –
used for defining Markup Languages)

• For further information:
http://www.w3.org/MarkUp/

• HTML – The Markup Language used to represent
Web pages for viewing by people
• Rendered and viewed in a Web Browser
• Not extensible

• Documents
• Easy to write – Markup your data with tags
• Platform independent
• Can contain links to Images, documents,

and other pages
• HTML is an application/instance of SGML

(Standard Generalized Markup Language, ISO 8879:1986 –
used for defining Markup Languages)

• For further information:
http://www.w3.org/MarkUp/

Some Problems (1/2)Some Problems (1/2)

Some Problems (2/2)Some Problems (2/2)
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html><head>

<title>The Some Problems Example</title>
</head><body>

<H1>Separation Of Concerns</h1>
There are a lot of problems using
HTML for <WebEngineering>Web Application development</WebEngineering>,
if you do not separate concerns. <P>

The Bold and <i>Italic</i> example:

While rendering is easy nowadays.<i> The semantic of this markup is
not </i> clear.

</BODY></HTML>
• REMEMBER: Do not develop Applications in this manner!

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html><head>

<title>The Some Problems Example</title>
</head><body>

<H1>Separation Of Concerns</h1>
There are a lot of problems using
HTML for <WebEngineering>Web Application development</WebEngineering>,
if you do not separate concerns. <P>

The Bold and <i>Italic</i> example:

While rendering is easy nowadays.<i> The semantic of this markup is
not </i> clear.

</BODY></HTML>
• REMEMBER: Do not develop Applications in this manner!

Observations on HTMLObservations on HTML
• Powerful for Presentation (Focus on Client-Side)

• Cascading Style Sheets (CSS)
• Allows for dynamic behavior using scripting/ DHTML
• Allows for proprietary extension (ActiveX, plug-ins,

etc.).
• Easy to write and generate, but:

• Difficult to parse
• No support for extending semantics, e.g. using your

own tags
• Difficult to apply disciplined approaches

• Powerful for Presentation (Focus on Client-Side)
• Cascading Style Sheets (CSS)
• Allows for dynamic behavior using scripting/ DHTML
• Allows for proprietary extension (ActiveX, plug-ins,

etc.).
• Easy to write and generate, but:

• Difficult to parse
• No support for extending semantics, e.g. using your

own tags
• Difficult to apply disciplined approaches

eXtensible Markup
Language (XML)

XML (1/2)XML (1/2)
• The eXtensible Markup Language
• XML is a universal format for structured

documents and data on the Web
• XML is a standard, interoperable way to

describe data for flexible processing
• Multi-format delivery
• Schema-aware information retrieval
• Transformation and dynamic data customization
• Archival: standardized, self-describing

• The eXtensible Markup Language
• XML is a universal format for structured

documents and data on the Web
• XML is a standard, interoperable way to

describe data for flexible processing
• Multi-format delivery
• Schema-aware information retrieval
• Transformation and dynamic data customization
• Archival: standardized, self-describing

XML (2/2)XML (2/2)
• http://www.w3.org/XML/
• XML looks like markup (e.g., HTML) but in this

context the interpretation of data is the job of the
application

• XML tags/elements/attributes are not predefined
• XML uses a Document Type Definition (DTD) or

an XML Schema to describe data
• XML with a DTD or XML Schema is designed to

be self-descriptive

• http://www.w3.org/XML/
• XML looks like markup (e.g., HTML) but in this

context the interpretation of data is the job of the
application

• XML tags/elements/attributes are not predefined
• XML uses a Document Type Definition (DTD) or

an XML Schema to describe data
• XML with a DTD or XML Schema is designed to

be self-descriptive

XML HistoryXML History
• 1996 Development started
• 1997 Public Drafts

• E.g. Provided in paper form at WWW6, Santa
Clara, CA

• February, 1998 W3C REC
• Based on experience: simplified form of SGML
• XML derived from SGML – both are used for

defining Markup Languages
• XML = 80% of SGML´s capabilities, 20% of

SGML´s complexity

• 1996 Development started
• 1997 Public Drafts

• E.g. Provided in paper form at WWW6, Santa
Clara, CA

• February, 1998 W3C REC
• Based on experience: simplified form of SGML
• XML derived from SGML – both are used for

defining Markup Languages
• XML = 80% of SGML´s capabilities, 20% of

SGML´s complexity

The W3C Standards* ProcessThe W3C Standards* Process
• World Wide Web Consortium (W3C)
• Development is organized into WGs.

• Working Group (~10) - set agenda /decide
• Special Interest Group (~100) -

discuss/recommend
• W3C members (~500) - vote
• W3C Director (TimBL) - may veto

• The public--comment on public WDs;
adopt/reject

• World Wide Web Consortium (W3C)
• Development is organized into WGs.

• Working Group (~10) - set agenda /decide
• Special Interest Group (~100) -

discuss/recommend
• W3C members (~500) - vote
• W3C Director (TimBL) - may veto

• The public--comment on public WDs;
adopt/reject

XML FactsXML Facts
• Important for Web development because it

removes two constraints:
• Dependence on a single, inflexible Document

Type (HTML);
• The complexity of full SGML, whose syntax

allows many powerful but hard-to-program
options

• XML was not designed to do anything
• XML is free and extensible
• XML complements (not replaces) HTML

• Important for Web development because it
removes two constraints:
• Dependence on a single, inflexible Document

Type (HTML);
• The complexity of full SGML, whose syntax

allows many powerful but hard-to-program
options

• XML was not designed to do anything
• XML is free and extensible
• XML complements (not replaces) HTML

XML and HTMLXML and HTML
• XML was designed to “carry” data
• Two different goals:

• XML – describe data and focus on what it is
• HTML – display data and focus on how it looks

• XML was designed to “carry” data
• Two different goals:

• XML – describe data and focus on what it is
• HTML – display data and focus on how it looks

XML CharacteristicsXML Characteristics
• Well-Formed – An XML document is well-

formed if it complies to the following rules:
• Elements have an open and close tag:

<tag>content</tag>
• Empty elements are closed by “ / ” e.g. <emptyelem/>
• Attribute values are quoted

• Valid – An XML document is well-formed and if
its content conforms to the rules in its document
type definition or schema
• Validity allows an application to make sure the XML

data is complete, is formated properly, and has
appropriate attribute values.

• Well-Formed – An XML document is well-
formed if it complies to the following rules:
• Elements have an open and close tag:

<tag>content</tag>
• Empty elements are closed by “ / ” e.g. <emptyelem/>
• Attribute values are quoted

• Valid – An XML document is well-formed and if
its content conforms to the rules in its document
type definition or schema
• Validity allows an application to make sure the XML

data is complete, is formated properly, and has
appropriate attribute values.

The Two Worlds of XMLThe Two Worlds of XML
• Markup of documents: the original

• This perspective is our focus here
• Document representation was the primary problem

XML was created to solve
• Data exchange and protocol design

• XML turned out to fill important gaps
• Relational databases needed a way to share records

and multi-table data
• Protocol designers wanted a way to encapsulate

structured data

• Markup of documents: the original
• This perspective is our focus here
• Document representation was the primary problem

XML was created to solve
• Data exchange and protocol design

• XML turned out to fill important gaps
• Relational databases needed a way to share records

and multi-table data
• Protocol designers wanted a way to encapsulate

structured data

The Two Worlds UnitedThe Two Worlds United
• Documents and “semi-structured” data share

features
• Hierarchical structure
• String content
• Variations in structure

• Their applications also share needs
• Need for a lingua franca, independent of APIs
• Ability to cope with international characters
• “Fit” with WWW and HTTP.

• Documents and “semi-structured” data share
features
• Hierarchical structure
• String content
• Variations in structure

• Their applications also share needs
• Need for a lingua franca, independent of APIs
• Ability to cope with international characters
• “Fit” with WWW and HTTP.

XML is More GeneralXML is More General
• Tags label arbitrary information units

• More suited to multiple purposes
• “Looking right” is needed but not enough

• Supports custom information structures
• If you have “price” or “procedure”, you can make a

tag for it, and validate its usage
• Can support many different information models

• E.g., molecular models, vector graphics, etc.
• More “teeth” to enforce consistent syntax

• Works hard to avoid semi-interoperable docs

• Tags label arbitrary information units
• More suited to multiple purposes
• “Looking right” is needed but not enough

• Supports custom information structures
• If you have “price” or “procedure”, you can make a

tag for it, and validate its usage
• Can support many different information models

• E.g., molecular models, vector graphics, etc.
• More “teeth” to enforce consistent syntax

• Works hard to avoid semi-interoperable docs

Better Rendering than HTMLBetter Rendering than HTML
• Fully internationalized

• Also better for visually-impaired users
• Supports multiple renderings

• Customize to the user, time, situation, device
• Separates formatting from structure
• And processing other than rendering

• Large documents don’t break it
• Easy to trade off server/client work
• Artificial “next tiny bit” links no longer necessary
• No searches that fail because big doc was split

• XHTML is XML-conforming flavor of HTML
• Clean existing HTML is already close...

• Fully internationalized
• Also better for visually-impaired users

• Supports multiple renderings
• Customize to the user, time, situation, device
• Separates formatting from structure
• And processing other than rendering

• Large documents don’t break it
• Easy to trade off server/client work
• Artificial “next tiny bit” links no longer necessary
• No searches that fail because big doc was split

• XHTML is XML-conforming flavor of HTML
• Clean existing HTML is already close...

XML Treats Documents like DatabasesXML Treats Documents like Databases

• XML brings benefits of DBs to documents
• Schema to model information directly
• Formal validation, locking, versioning, rollback...

• But
• Not all traditional database concepts map cleanly,

because documents are fundamentally different in
some ways

• XML brings benefits of DBs to documents
• Schema to model information directly
• Formal validation, locking, versioning, rollback...

• But
• Not all traditional database concepts map cleanly,

because documents are fundamentally different in
some ways

XML ExampleXML Example
• A way of representing information
• XML documents (application of XML) are

composed of elements and attributes

• A way of representing information
• XML documents (application of XML) are

composed of elements and attributes
<?xml version="1.0“encoding="ISO-8859-
1” ?>
<order OrderID="10643">

<item>
<room id=“Room10"/>

</item>
<item>

<room id=“Room11"/>
</item>
<OrderDate

ts="2005-10-17T00:00:00"/>
<price>200.00 dollars</price>

</order>

order

item

room
item

room
OrderDate

price
200.00 dollars

What is Structure What is Structure
• To Relational Database theorists, structure is:

• Tables with fixed sets of non-repeating named fields,
that have little internal structure

• E-R diagrams with fixed number of nodes
• Structured documents are different:

• The order of SECs, Ps, etc. matters (a lot)
• Many hierarchical layers (which text crosses)
• Text/graphic data mixes with aggregate objects
• Optional or repeatable sub-parts abound
• Interaction with natural language phenomena

• These are very different requirements

• To Relational Database theorists, structure is:
• Tables with fixed sets of non-repeating named fields,

that have little internal structure
• E-R diagrams with fixed number of nodes

• Structured documents are different:
• The order of SECs, Ps, etc. matters (a lot)
• Many hierarchical layers (which text crosses)
• Text/graphic data mixes with aggregate objects
• Optional or repeatable sub-parts abound
• Interaction with natural language phenomena

• These are very different requirements

When Structure is Essential When Structure is Essential
• Large scale data
• Data with individual parts you care about

• (like price-tag, tool-list, citation, author,...)
• Need for good navigation tools
• Mission-critical information
• Information that must last
• Multi-author publishing process
• Multiple delivery media

• Large scale data
• Data with individual parts you care about

• (like price-tag, tool-list, citation, author,...)
• Need for good navigation tools
• Mission-critical information
• Information that must last
• Multi-author publishing process
• Multiple delivery media

What’s the Difference?What’s the Difference?
• Without structure

• Data conversion is far more expensive
• Multi-platform and/or multi-media delivery require re-

authoring and hand-work
• Paper production is inconsistent
• Late format changes are far more risky
• Retrieval is prone to many false hits

• “Pay me now, or pay me later”

• Without structure
• Data conversion is far more expensive
• Multi-platform and/or multi-media delivery require re-

authoring and hand-work
• Paper production is inconsistent
• Late format changes are far more risky
• Retrieval is prone to many false hits

• “Pay me now, or pay me later”

XML Design PrinciplesXML Design Principles
• Straightforwardly usable over the Internet
• Support for a wide variety of applications
• Compatible with SGML
• Make writing XML programs easy
• Avoid optional features
• Human-readable (if not terse) markup
• Formal and concise design
• Design produced quickly

• Straightforwardly usable over the Internet
• Support for a wide variety of applications
• Compatible with SGML
• Make writing XML programs easy
• Avoid optional features
• Human-readable (if not terse) markup
• Formal and concise design
• Design produced quickly

Opportunities with XMLOpportunities with XML
• Scalability and openness of Web solutions
• “Rich clients” for complex information

• Dynamic user views
• XML as interprocess communication protocol for

“data” (as opposed to “text”)
• eCommerce integration
• New methods of creation

• Schema combination/composition
• Free-form, schema-less data development

• Scalability and openness of Web solutions
• “Rich clients” for complex information

• Dynamic user views
• XML as interprocess communication protocol for

“data” (as opposed to “text”)
• eCommerce integration
• New methods of creation

• Schema combination/composition
• Free-form, schema-less data development

Web UsageWeb Usage
• XML works with familiar Web paradigms

• Locations are expressed as URIs
• High interoperability because of few options
• Easily implementable and usable
• Robust against network failures
• Avoids serving schemas every time with documents

• (but can do better validation anyway, when
needed)

• XML works with familiar Web paradigms
• Locations are expressed as URIs
• High interoperability because of few options
• Easily implementable and usable
• Robust against network failures
• Avoids serving schemas every time with documents

• (but can do better validation anyway, when
needed)

Some Additional XML DetailsSome Additional XML Details
• Well-formedness
• Error handling
• Case sensitivity
• HTML compatibility

• Well-formedness
• Error handling
• Case sensitivity
• HTML compatibility

Well-formedness (1/2)Well-formedness (1/2)
• Document has a single root element, and
• Elements nest properly
• Entities are whole subtrees (not </P><P>)
• No elements omission (close what you

open)
• Attributes must be quoted
• < and & must always be escaped in some

way
• A document can be well-formed (and

parsable) whether or not it fits a given
schema

• Document has a single root element, and
• Elements nest properly
• Entities are whole subtrees (not </P><P>)
• No elements omission (close what you

open)
• Attributes must be quoted
• < and & must always be escaped in some

way
• A document can be well-formed (and

parsable) whether or not it fits a given
schema

Well-formedness (2/2)Well-formedness (2/2)

<root>
<child>

<subchild>……</subchild>
</child>

</root>

Tutorial OutlineTutorial Outline
• Part 1: The basics of creating an XML

document
• Part 2: Developing constraints for a well

formed XML document
• Part 3: XML and supplementary

technologies

• Part 1: The basics of creating an XML
document

• Part 2: Developing constraints for a well
formed XML document

• Part 3: XML and supplementary
technologies

Part 1: Background for XMLPart 1: Background for XML
• An eXtensible Markup Language (XML)

document describes the structure of data
• XML and HTML have a similar syntax …

both derived from SGML
• XML has no mechanism to specify the

format for presenting data to the user
• An XML document resides in its own file

with an ‘.xml’ extension

• An eXtensible Markup Language (XML)
document describes the structure of data

• XML and HTML have a similar syntax …
both derived from SGML

• XML has no mechanism to specify the
format for presenting data to the user

• An XML document resides in its own file
with an ‘.xml’ extension

Main Components of an XML
Document
Main Components of an XML
Document
• Elements: <hello>
• Attributes: <item id=“33905”>
• Entities: < (<)
• Comments: <!– blah blah -->
• Advanced Components

• CData Sections
• Processing Instructions

• Elements: <hello>
• Attributes: <item id=“33905”>
• Entities: < (<)
• Comments: <!– blah blah -->
• Advanced Components

• CData Sections
• Processing Instructions

The Basic RulesThe Basic Rules
• XML is case sensitive
• All start elements must have end elements
• Empty elements may be “self-closing” – e.g.,

<img…./>,

• Elements must be properly nested
• XML declaration is the first statement
• Every document must contain a root element
• Attribute values must have quotation marks
• Certain characters are reserved for parsing

• XML is case sensitive
• All start elements must have end elements
• Empty elements may be “self-closing” – e.g.,

<img…./>,

• Elements must be properly nested
• XML declaration is the first statement
• Every document must contain a root element
• Attribute values must have quotation marks
• Certain characters are reserved for parsing

Common Errors for Element
Naming
Common Errors for Element
Naming
• Do not use white space when creating

names for elements
• Element names cannot begin with a digit,

although names can contain digits
• Only certain punctuation allowed –

periods, colons, and hyphens

• Do not use white space when creating
names for elements

• Element names cannot begin with a digit,
although names can contain digits

• Only certain punctuation allowed –
periods, colons, and hyphens

Try It!Try It!
• Open XML Editor (www.philo.de/xmledit)
• Peter’s XML Editor (www.iol.ie/~pxe)

• Notepad (but cannot check for well-
formedness and validity

• Open XML Editor (www.philo.de/xmledit)
• Peter’s XML Editor (www.iol.ie/~pxe)

• Notepad (but cannot check for well-
formedness and validity

Elements vs. AttributesElements vs. Attributes
• Data can be stored in child elements or in

attributes
• Data can be stored in child elements or in

attributes

Problems Using AttributesProblems Using Attributes
• Attributes cannot contain multiple values (child

elements can)
• Attributes are not easily expandable (for future

modifications)
• Attributes cannot describe structures (child

elements can)
• Attributes are more difficult to manipulate with

program code
• Attribute values are not easily tested against

DTDs or Schemas
• Metadata should be attributes; data should be

elements

• Attributes cannot contain multiple values (child
elements can)

• Attributes are not easily expandable (for future
modifications)

• Attributes cannot describe structures (child
elements can)

• Attributes are more difficult to manipulate with
program code

• Attribute values are not easily tested against
DTDs or Schemas

• Metadata should be attributes; data should be
elements

Part 2: Legal Building Blocks of
XML
Part 2: Legal Building Blocks of
XML
• A Document Type Definition (DTD) or XML

Schema allows the developer to create a
set of rules to specify legal content and
place restrictions on an XML file

• If the XML document does not follow the
rules contained within the DTD or Schema,
a parser generates an error

• An XML document that conforms to the
rules within a DTD or Schema is said to be
valid

• A Document Type Definition (DTD) or XML
Schema allows the developer to create a
set of rules to specify legal content and
place restrictions on an XML file

• If the XML document does not follow the
rules contained within the DTD or Schema,
a parser generates an error

• An XML document that conforms to the
rules within a DTD or Schema is said to be
valid

What are the Parts of an XML Document?What are the Parts of an XML Document?

• The DTD
• Elements
• Attributes
• General entities
• Character

references

• The DTD
• Elements
• Attributes
• General entities
• Character

references

• Comments
• Marked sections
• Processing

instructions
• Notations
• Identifiers and

catalogs

• Comments
• Marked sections
• Processing

instructions
• Notations
• Identifiers and

catalogs

Error HandlingError Handling
• “Draconian error handling”

• Major errors cause processor to stop
passing data in the “normal way”

• Fatal errors:
• Ill-formed document
• Certain entity references in incorrect places
• Misplaced character-encoding declarations

• This helps save huge $ on error-recovery

• “Draconian error handling”
• Major errors cause processor to stop

passing data in the “normal way”
• Fatal errors:

• Ill-formed document
• Certain entity references in incorrect places
• Misplaced character-encoding declarations

• This helps save huge $ on error-recovery

Case SensitivityCase Sensitivity
• HTML is

• Case-insensitive for tag names: <P> = <p>
• Case-sensitive for entity names: < ≠ <

• XML is case-sensitive for both!
• Unicode standard advises against case-folding
• Folding is not well-defined for all languages

• Turkish has two lower-case i’s, only one upper
• In languages with no accented caps, can’t reverse
• Error-prone for programmers

• XHTML uses lower case

• HTML is
• Case-insensitive for tag names: <P> = <p>
• Case-sensitive for entity names: < ≠ <

• XML is case-sensitive for both!
• Unicode standard advises against case-folding
• Folding is not well-defined for all languages

• Turkish has two lower-case i’s, only one upper
• In languages with no accented caps, can’t reverse
• Error-prone for programmers

• XHTML uses lower case

Practice Validating XHTMLPractice Validating XHTML

XML System ArchitecturesXML System Architectures

An (X)HTML SystemAn (X)HTML System

(X)HTML

document
•Web Server

Web Client

Internet

Parser,
formatter,
interface

XML
data

Parser Information
structure

(tree+links)

Documents, stylesheets, and other data can
all be expressed in XML.

DOM Interface

Any application can
plug in via an API
called “Document

Object Model”

DTD/
Schema

This model can work locally or over a
network. Parsing, tree-building, and access

can shift between client/server

But their information is accessed directly.

How Do You Get the Data?How Do You Get the Data?

Server-side XML PublishingServer-side XML Publishing

XML
data

XSL(T)

Server transforms to HTML/CSS;
Ship to client browser for display

http

Stylesheet

HTML
+CSS

Browser/
Interface

Very common current strategy;
Leverages current technology

XML EverywhereXML Everywhere
• XML separates representation from structure

• So you can use the same parsers, network protocols,
tree managers, and APIs to access documents,
stylesheets, search and query, etc.

• XML allows separating application parts
• So you can mix and match formatters, search engines,

networks and protocols, etc.
• XML separates out semantics

• So you can control style or search semantics without
having to mangle your documents to do it

• XML separates representation from structure
• So you can use the same parsers, network protocols,

tree managers, and APIs to access documents,
stylesheets, search and query, etc.

• XML allows separating application parts
• So you can mix and match formatters, search engines,

networks and protocols, etc.
• XML separates out semantics

• So you can control style or search semantics without
having to mangle your documents to do it

HTML CompatibilityHTML Compatibility
• XHTML is an XML application

• One schema among many (probably a
popular one, of course)

• Web browser should start supporting
generic XML regardless of tag-set.
• Don’t hard-code sizes and names

• XHTML is an XML application
• One schema among many (probably a

popular one, of course)
• Web browser should start supporting

generic XML regardless of tag-set.
• Don’t hard-code sizes and names

FootnoteFootnote
• XML is text, but isn't meant to be read

• Applications can store their data or respond in
Web-compliant style (Text) instead of binary
format

• XML is verbose by design
• Data + Markup is in most cases larger than a

binary format – but disk space is cheap, HTTP
supports compression on the fly (gzip)

• As XML defines Markup Languages…
• XHTML, XSL, XForms, etc. are applications of

XML

• XML is text, but isn't meant to be read
• Applications can store their data or respond in

Web-compliant style (Text) instead of binary
format

• XML is verbose by design
• Data + Markup is in most cases larger than a

binary format – but disk space is cheap, HTTP
supports compression on the fly (gzip)

• As XML defines Markup Languages…
• XHTML, XSL, XForms, etc. are applications of

XML

The XML “Alphabet Soup” (1/3)The XML “Alphabet Soup” (1/3)
XML Extensible Markup

Language
Defines XML documents

XSL Extensible Stylesheet
Language

Language for expressing stylesheets;
consists of XSL(T) and XSL-FO

Data Island XML data embedded in a HTML page

Data Binding Automatic population of HTML elements from XML data

Namespace A collection of names, identified by a URI reference, which are
used in XML documents

XSL(T) XSL Transformations Language for transforming XML
documents

XSL-FO XSL Formatting
Objects

Language to describe precise layout of
text on a page

The XML “Alphabet Soup”(2/3)The XML “Alphabet Soup”(2/3)
DTD Document Type

Definition
Non-XML schema

SAX Simple API for XML API to parse XML documents; event-
driven

XML
Schema
(XSD)

XML Schema Definition an XML based alternative to DTD

DOM Document Object Model API to read, create and edit XML
documents; creates in-memory object
model

XPath XML Path Language A language for addressing parts of an
XML document, designed to be used
by both XSL(T) and XPointer

XPointer XML Pointer Language Supports addressing into the internal
structures of XML documents

XLink XML Linking Language Describes links between XML
documents

XQuery XML Query Language
(draft)

Flexible mechanism for querying XML
data as if it were a database

The XML “Alphabet Soup”(3/3)The XML “Alphabet Soup”(3/3)
SOAP Simple Object Access

Protocol
A simple XML based protocol to let
applications exchange information
over HTTP

WSDL Web Services
Description Language

An XML-based language for describing
Web services and how to access them

WAP Wireless Application
Protocol

The leading standard for information
services on wireless terminals like
digital mobile phones

WML Wireless Markup
Language

WAP uses the mark-up language WML
(not HTML)

XML Information SetXML Information Set
• What data in an XML document “counts”?

• Elements, attributes, content
• Order and hierarchy of elements
• No whitespace within tags
• All whitespace within elements
• Not which kind of quotes around attributes

• Required for interoperability
• Applications must not count nodes differently
• W3C “Document Object Model” is related

• DOM is an API for XML, not an O.M.

• What data in an XML document “counts”?
• Elements, attributes, content
• Order and hierarchy of elements
• No whitespace within tags
• All whitespace within elements
• Not which kind of quotes around attributes

• Required for interoperability
• Applications must not count nodes differently
• W3C “Document Object Model” is related

• DOM is an API for XML, not an O.M.

Document AnalysisDocument Analysis
• Cycle of steps; repeat until out of time
• Identify project requirements/audience
• Using those, identify information items in the

document that could be important
• Make sure you have a way to use that

information
• Identify restrictions on those items
• Identify structural constraints that may be

needed
• Identify non-semantic features that may be

important for presentation, etc.

• Cycle of steps; repeat until out of time
• Identify project requirements/audience
• Using those, identify information items in the

document that could be important
• Make sure you have a way to use that

information
• Identify restrictions on those items
• Identify structural constraints that may be

needed
• Identify non-semantic features that may be

important for presentation, etc.

Project RequirementsProject Requirements
• Know the audience/readers
• Know the authors
• Don’t forget the editorial/clerical staff
• These 3 groups are the experts, you are

the detail person
• Don’t make a lifetime commitment to your

processing model, but have one in mind;
analysis without limitations is dangerous

• Know the audience/readers
• Know the authors
• Don’t forget the editorial/clerical staff
• These 3 groups are the experts, you are

the detail person
• Don’t make a lifetime commitment to your

processing model, but have one in mind;
analysis without limitations is dangerous

Identifying Information ItemsIdentifying Information Items
• This is pretty much a manual process
• Often best done with paper and

highlighters and post-its
• In later stages, adding tags to a text

transcript can be useful.
• The more documents you’ve looked at

and thought about, the easier this
becomes.

• This is pretty much a manual process
• Often best done with paper and

highlighters and post-its
• In later stages, adding tags to a text

transcript can be useful.
• The more documents you’ve looked at

and thought about, the easier this
becomes.

Issues to Think AboutIssues to Think About
• Cross-references
• Structural divisions (headings, blurbs,

ambiguities)
• Tradeoff between freedom and

processing
• Normalization of data items
• What external data and catalogs may

exist

• Cross-references
• Structural divisions (headings, blurbs,

ambiguities)
• Tradeoff between freedom and

processing
• Normalization of data items
• What external data and catalogs may

exist

Restrictions on Data ItemsRestrictions on Data Items
• Content model
• Data values (are there controlled or semi-

controlled vocabularies?)
• Are there “authority files” for large open

sets (like lists of authors)
• How variable is the content, and how

realistic the idea to normalize it.

• Content model
• Data values (are there controlled or semi-

controlled vocabularies?)
• Are there “authority files” for large open

sets (like lists of authors)
• How variable is the content, and how

realistic the idea to normalize it.

IE Data Islands

What is a Data Island?What is a Data Island?
• XML data embedded in an (X)HTML

document
• Unique to IE
• Uses the “unofficial” <xml> element

• XML data embedded in an (X)HTML
document

• Unique to IE
• Uses the “unofficial” <xml> element

DTD
(Document Type Definition)

Content ModelsContent Models
• These are modeled on regular expressions
• In DTD, each element has one content

model for all time
• Similarly, each element has one set of

attributes for all time
• Attributes and content models are

completely independent

• These are modeled on regular expressions
• In DTD, each element has one content

model for all time
• Similarly, each element has one set of

attributes for all time
• Attributes and content models are

completely independent

AmbiguityAmbiguity
• A content model is ambiguous if it

contains an alternation (a | b) where the
content models a and b cannot be
distinguished by their first element.

• A content model is ambiguous if an
optional occurrence indicator is followed
by a submodel whose first element is not
different.

• A content model is ambiguous if it
contains an alternation (a | b) where the
content models a and b cannot be
distinguished by their first element.

• A content model is ambiguous if an
optional occurrence indicator is followed
by a submodel whose first element is not
different.

Web-compliant Data DefinitionsWeb-compliant Data Definitions
• Extensible Markup Language (XML) 1.0 (Third Edition)

W3C Recommendation 04 February 2004
http://www.w3.org/TR/REC-xml/
“The function of the markup in an XML document is to describe its
storage and logical structure and to associate attribute-value
pairs with its logical structures. XML provides a mechanism, the
document type declaration, to define constraints on the logical
structure and to support the use of predefined storage units.”

Document Type Declaration – Contains or points to markup
declarations that provide a grammar for a class of documents.
This grammar is known as a document type definition, or DTD.
Document Type Definition – Set of markup declarations
included in or referenced by an XML Document.

• Design using e.g. Diagramming Technique

• Extensible Markup Language (XML) 1.0 (Third Edition)
W3C Recommendation 04 February 2004
http://www.w3.org/TR/REC-xml/
“The function of the markup in an XML document is to describe its
storage and logical structure and to associate attribute-value
pairs with its logical structures. XML provides a mechanism, the
document type declaration, to define constraints on the logical
structure and to support the use of predefined storage units.”

Document Type Declaration – Contains or points to markup
declarations that provide a grammar for a class of documents.
This grammar is known as a document type definition, or DTD.
Document Type Definition – Set of markup declarations
included in or referenced by an XML Document.

• Design using e.g. Diagramming Technique

Why Use a DTD?Why Use a DTD?
• A single DTD ensures a common format for

each XML document that references it
• An application can use a standard DTD to

verify that data that it receives from the outside
world is valid

• A description of legal, valid data further
contributes to the interoperability and
efficiency of using XML

• A single DTD ensures a common format for
each XML document that references it

• An application can use a standard DTD to
verify that data that it receives from the outside
world is valid

• A description of legal, valid data further
contributes to the interoperability and
efficiency of using XML

XML 1.0 DTDsXML 1.0 DTDs
• DTDs let you say:

• What element types can occur and where
• What attributes each element type can have
• What notations are in use
• What external entities can be referenced

• Standard DTDs exist in almost every
domain
• Some repositories exist, such as xml.org

• DTDs let you say:
• What element types can occur and where
• What attributes each element type can have
• What notations are in use
• What external entities can be referenced

• Standard DTDs exist in almost every
domain
• Some repositories exist, such as xml.org

XML DeclarationXML Declaration
<?xml ?>
• Not required, but typically used
• Attributes include:

• version
• encoding – the character encoding in the document
• standalone – if yes no external DTD required

• <?xml version=”1.0” encoding=”UTF-8”>
• <?xml version=”1.0” standalone=”yes”>

<?xml ?>
• Not required, but typically used
• Attributes include:

• version
• encoding – the character encoding in the document
• standalone – if yes no external DTD required

• <?xml version=”1.0” encoding=”UTF-8”>
• <?xml version=”1.0” standalone=”yes”>

Document Type DefinitionDocument Type Definition
• Document Type Definition Syntax

• Document Type Definition ::= XMLDecl? Misc*
(doctypedecl Misc*)?

• XMLDecl ::= '<?xml' VersionInfo EncodingDecl?
SDDecl? S? '?>‘

• VersionInfo ::= S 'version' Eq ("'" VersionNum "'" | '"'
VersionNum '"')

• Eq ::= S? '=' S?[26]
• VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
• Misc ::= Comment | PI | S
• S ::= White Space

• Example - <?xml version="1.0"?>

• Document Type Definition Syntax
• Document Type Definition ::= XMLDecl? Misc*

(doctypedecl Misc*)?
• XMLDecl ::= '<?xml' VersionInfo EncodingDecl?

SDDecl? S? '?>‘
• VersionInfo ::= S 'version' Eq ("'" VersionNum "'" | '"'

VersionNum '"')
• Eq ::= S? '=' S?[26]
• VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
• Misc ::= Comment | PI | S
• S ::= White Space

• Example - <?xml version="1.0"?>

Document Type DefinitionDocument Type Definition
• Document Type Definition Syntax

• Doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)?
S? ('[' (Markupdecl | DeclSep)* ']' S?)? '>‘

• DeclSep ::= PEReference | S
• Markupdecl ::= elementdecl | AttlistDecl | EntityDecl |

NotationDecl | PI | Comment

• Types of Markup Declaration:
• Element Type Declaration
• Attribute-List Declaration
• Entity Declaration
• Notation Declaration

• Document Type Definition Syntax
• Doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)?

S? ('[' (Markupdecl | DeclSep)* ']' S?)? '>‘
• DeclSep ::= PEReference | S
• Markupdecl ::= elementdecl | AttlistDecl | EntityDecl |

NotationDecl | PI | Comment

• Types of Markup Declaration:
• Element Type Declaration
• Attribute-List Declaration
• Entity Declaration
• Notation Declaration

DOCTYPEDOCTYPE
<!DOCTYPE …>
• Specify a DTD for the document

• Refer to a DTD using a URI
• Include a DTD inline as part of the

document
• Example: Refer to a DTD
• <!DOCTYPE order SYSTEM

“http://a.b/order.dtd”>

<!DOCTYPE …>
• Specify a DTD for the document

• Refer to a DTD using a URI
• Include a DTD inline as part of the

document
• Example: Refer to a DTD
• <!DOCTYPE order SYSTEM

“http://a.b/order.dtd”>

Mixed SpecificationMixed Specification
• Mixed ::=

'(' S? '#PCDATA' (S? '|' S? Name)* S? ')*'
| '(' S? '#PCDATA' S? ')'

• Name must not appear more than once
• Example

• (#PCDATA) – Only parsed Character Data
allowed (= Text). Restricts all Child-Elements
to be of Type Text.

• Mixed ::=
'(' S? '#PCDATA' (S? '|' S? Name)* S? ')*'

| '(' S? '#PCDATA' S? ')'
• Name must not appear more than once
• Example

• (#PCDATA) – Only parsed Character Data
allowed (= Text). Restricts all Child-Elements
to be of Type Text.

Basic OperatorsBasic Operators
• Joining

• Sequence a,b,c

• Alternation a | b | c
• Grouping (a)
• Repetition

• 0 or more a*
• 1 or more a+
• Optional a?

• Joining
• Sequence a,b,c

• Alternation a | b | c
• Grouping (a)
• Repetition

• 0 or more a*
• 1 or more a+
• Optional a?

DataData
• #PCDATA
• CDATA
• Element names
• Model groups
• Mixed content (#PCDATA | x | …)*
• ANY

• EMPTY

• #PCDATA
• CDATA
• Element names
• Model groups
• Mixed content (#PCDATA | x | …)*
• ANY

• EMPTY

PCDATAPCDATA
• Parsed character data
• Text occurring in a context in which

markup and entity references may occur

• Parsed character data
• Text occurring in a context in which

markup and entity references may occur

CDATACDATA
<![CDATA[]]>

Allows to define special sections of
character data, which the processor does
not interpret as markup
Anything inside is treated as plain text
Example:

• <![CDATA[<ThisIsNoElement why=“it is
just data in a CDATA section”/>]]>

<![CDATA[]]>
Allows to define special sections of
character data, which the processor does
not interpret as markup
Anything inside is treated as plain text
Example:

• <![CDATA[<ThisIsNoElement why=“it is
just data in a CDATA section”/>]]>

Diagramming Technique (1/2)Diagramming Technique (1/2)
Description

Component called A

Component that can not
be decomposed called A

A is optional or occurs
once
A is repeated 1 to n times

A occurs 0 to n times

Description
Component called A

Component that can not
be decomposed called A

A is optional or occurs
once
A is repeated 1 to n times

A occurs 0 to n times

Notation
(A)

(#PCDATA)

A?

A+

A*

Notation
(A)

(#PCDATA)

A?

A+

A*

A

A

A

A

A

Diagramming Technique (2/2)Diagramming Technique (2/2)
Description

Concatenation/Series
B after A

Selection A or B

Example

Description
Concatenation/Series
B after A

Selection A or B

Example
B

BA

A

FoodMinibarRoom

Notation
• (A,B)

• (A|B)

• Example
Account= (Room,

(Minibar,Food+)?,
Total)

Total= (#PCDATA)

Notation
• (A,B)

• (A|B)

• Example
Account= (Room,

(Minibar,Food+)?,
Total)

Total= (#PCDATA)

Total

Account:

Declaration, Definition, DataDeclaration, Definition, Data

Cautions Concerning DTDsCautions Concerning DTDs
• All element declarations begin with <!ELEMENT

and end with >
• The ELEMENT declaration is case sensitive
• The programmer must declare all elements

within an XML file
• Elements declared with the #PCDATA content

model can not have children
• When describing sequences, the XML document

must contain exactly those elements in exactly
that order.

• All element declarations begin with <!ELEMENT
and end with >

• The ELEMENT declaration is case sensitive
• The programmer must declare all elements

within an XML file
• Elements declared with the #PCDATA content

model can not have children
• When describing sequences, the XML document

must contain exactly those elements in exactly
that order.

The DTD (schema)The DTD (schema)
• A DTD is a simple schema, based on SGML
• They consist of declarations for the parts:

• <!ELEMENT CHAP (TI, SEC*, SUM)>
• <!ATTLIST P ID ID #IMPLIED>
• <!ELEMENT P (#PCDATA)>

• Can reference from DOCTYPE, or include:
• <!DOCTYPE book SYSTEM “book.dtd” [

<!ELEMENT P (#PCDATA)>…
]>

• Other schema languages are available
• They use XML syntax (why not?)

• A DTD is a simple schema, based on SGML
• They consist of declarations for the parts:

• <!ELEMENT CHAP (TI, SEC*, SUM)>
• <!ATTLIST P ID ID #IMPLIED>
• <!ELEMENT P (#PCDATA)>

• Can reference from DOCTYPE, or include:
• <!DOCTYPE book SYSTEM “book.dtd” [

<!ELEMENT P (#PCDATA)>…
]>

• Other schema languages are available
• They use XML syntax (why not?)

Terminology (1/4)Terminology (1/4)
• Element: a text feature distinguished by markup
• Tag: a string in angle brackets. <a> or . Two

tags delimit an element
• Content: anything in an element (children in the

parse tree) tags and characters between an
element’s tags

• Attribute: a (name, value) pair associated with an
element

• Element Type Name: a string like “p” or “img”
that identifies the type of an element

• Element: a text feature distinguished by markup
• Tag: a string in angle brackets. <a> or . Two

tags delimit an element
• Content: anything in an element (children in the

parse tree) tags and characters between an
element’s tags

• Attribute: a (name, value) pair associated with an
element

• Element Type Name: a string like “p” or “img”
that identifies the type of an element

Terminology (2/4)Terminology (2/4)
• Entity: abstraction of an item of data storage.
• General entity: entity whose text is contained in

its declaration.
• External entity: entity whose content is stored

externally to its declaration
• Declaration: meta-markup that declares entities,

content models, etc.
• Document instance: the tags and content in an

XML document, not counting declarations

• Entity: abstraction of an item of data storage.
• General entity: entity whose text is contained in

its declaration.
• External entity: entity whose content is stored

externally to its declaration
• Declaration: meta-markup that declares entities,

content models, etc.
• Document instance: the tags and content in an

XML document, not counting declarations

Terminology (3/4)Terminology (3/4)
• Document Type declaration (DOCTYPE):

declaration of root element of a document
instance, can refer to:

• External subset: DTD (XML declarations)
stored as an external entity.

• Internal subset: declarations contained
within a DOCTYPE declaration. ATTLIST
declarations must be parsed, and
interpreted.

• Document Type declaration (DOCTYPE):
declaration of root element of a document
instance, can refer to:

• External subset: DTD (XML declarations)
stored as an external entity.

• Internal subset: declarations contained
within a DOCTYPE declaration. ATTLIST
declarations must be parsed, and
interpreted.

Terminology (4/4)Terminology (4/4)
• Content Model: description of restrictions

on the content of an element

• Model Group: content model
subexpression in parentheses

• Repetition indicator: *, +, ?

• Prolog: All of the stuff before the document
instance starts.

• Content Model: description of restrictions
on the content of an element

• Model Group: content model
subexpression in parentheses

• Repetition indicator: *, +, ?

• Prolog: All of the stuff before the document
instance starts.

Anatomy of an ElementAnatomy of an Element

<p type="rule">Use a hyphen:
­.</p>

Start-tag Content End-tag

Element

E
le

m
en

t t
yp

e

Attribute
name

Attribute
value

(character)
entity

reference E
le

m
en

t t
yp

e

Attribute

ElementsElements
• Identify structural/semantic components
• Can (usually do) have children
• Represented by start-tags and end-tags:

• <P>Hello, world.</P>
• Some elements are EMPTY

• Special syntax so parser knows: <HR/>
• Schemas control what sub-element patterns can

occur with any given type of element
• Order matters / Context does not

• Identify structural/semantic components
• Can (usually do) have children
• Represented by start-tags and end-tags:

• <P>Hello, world.</P>
• Some elements are EMPTY

• Special syntax so parser knows: <HR/>
• Schemas control what sub-element patterns can

occur with any given type of element
• Order matters / Context does not

Element Type DeclarationElement Type Declaration
• Allows to define name of an element and

its Content Model
<!ELEMENT S Name S Content-Specification>

• Name is the element type being declared
• Content-Specification:

ANY – Any use (assumed when no content
model is provided)
EMPTY – No sub-elements allowed
Mixed or Children specification

• Allows to define name of an element and
its Content Model

<!ELEMENT S Name S Content-Specification>
• Name is the element type being declared
• Content-Specification:

ANY – Any use (assumed when no content
model is provided)
EMPTY – No sub-elements allowed
Mixed or Children specification

Children SpecificationChildren Specification
• Each name is the type of an element which may

appear as a child, as described in the grammar:
• Syntax:

• Children ::= (choice | seq) ('?' | '*' | '+')?
• cp ::= (Name | choice | seq) ('?' | '*' | '+')?
• choice ::= '(' S? cp (S? '|' S? cp)+ S? ')‘
• seq ::= '(' S? cp (S? ',' S? cp)* S? ')'

• Example
• (room,total) – Sequence of two elements of type

room and total.

• Each name is the type of an element which may
appear as a child, as described in the grammar:

• Syntax:
• Children ::= (choice | seq) ('?' | '*' | '+')?
• cp ::= (Name | choice | seq) ('?' | '*' | '+')?
• choice ::= '(' S? cp (S? '|' S? cp)+ S? ')‘
• seq ::= '(' S? cp (S? ',' S? cp)* S? ')'

• Example
• (room,total) – Sequence of two elements of type

room and total.

Attributes (1/2)Attributes (1/2)
• Specify properties/characteristics of elements

• That generally apply to the elements as wholes
• Values are atomic strings

• Though applications may impose more structure
• Represented by assignments within start-tags:

• <P TYPE="SECRET" ID="FOO">

• Schemas control what attributes can occur on
any given type of element

• One special type: ID, unique per document
• Attributes are not ordered

• Specify properties/characteristics of elements
• That generally apply to the elements as wholes

• Values are atomic strings
• Though applications may impose more structure

• Represented by assignments within start-tags:
• <P TYPE="SECRET" ID="FOO">

• Schemas control what attributes can occur on
any given type of element

• One special type: ID, unique per document
• Attributes are not ordered

Attributes (2/2)Attributes (2/2)
• Data types
• Default values / omissability
• <!ATTLIST p

type (summary | body) “body”
id ID #IMPLIED
prefix CDATA “”>

• Data types
• Default values / omissability
• <!ATTLIST p

type (summary | body) “body”
id ID #IMPLIED
prefix CDATA “”>

Attribute-List DeclarationAttribute-List Declaration
• Attributes – Used to associate name-value pairs

with elements.
• Attribute-List Declaration defines

Attributes bound to an Element
Type Constraints for these Attributes
Default Values for Attributes

• Syntax:
AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
AttDef ::= S AttributeName S AttType S DefaultDecl

• Attributes – Used to associate name-value pairs
with elements.

• Attribute-List Declaration defines
Attributes bound to an Element
Type Constraints for these Attributes
Default Values for Attributes

• Syntax:
AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
AttDef ::= S AttributeName S AttType S DefaultDecl

Attribute Types (1/2)Attribute Types (1/2)
• String Type

CDATA – Value is any literal string
• Tokenized Types

ID – Value must match name production and appear
not more than once (only one ID per Element!)
IDREF, IDREFS – Value(s) must match ID attribute on
some element in the document
ENTITY, ENTITIES – Value(s) must match name of
unparsed entity
NMTOKEN, NMTOKENS – Values(s) must match
NMToken production

• String Type
CDATA – Value is any literal string

• Tokenized Types
ID – Value must match name production and appear
not more than once (only one ID per Element!)
IDREF, IDREFS – Value(s) must match ID attribute on
some element in the document
ENTITY, ENTITIES – Value(s) must match name of
unparsed entity
NMTOKEN, NMTOKENS – Values(s) must match
NMToken production

Attribute Types (2/2)Attribute Types (2/2)
• Enumerated Types

(v1|…|vn) – Value is one of the values
provided in the declaration

• Example:
<!ATTLIST elemname
myenumtype (true|false|dontknow) 'true'>

• Enumerated Types
(v1|…|vn) – Value is one of the values
provided in the declaration

• Example:
<!ATTLIST elemname
myenumtype (true|false|dontknow) 'true'>

Attribute DefaultsAttribute Defaults
• Attribute Default – Defines whether an

attribute's presence is required and if not how to
deal with it

• Syntax:
DefaultDecl ::= '#REQUIRED' | '#IMPLIED' |

(('#FIXED' S)? AttValue)
#Required – Attribute must be specified
#Implied – Attribute is optional
#Fixed – Required attribute; value is specified in
quotes
AttValue – Contains the declared default value

• Attribute Default – Defines whether an
attribute's presence is required and if not how to
deal with it

• Syntax:
DefaultDecl ::= '#REQUIRED' | '#IMPLIED' |

(('#FIXED' S)? AttValue)
#Required – Attribute must be specified
#Implied – Attribute is optional
#Fixed – Required attribute; value is specified in
quotes
AttValue – Contains the declared default value

General Entities (1/2)General Entities (1/2)
• A lexical mechanism for inclusion

• But, constrained to including subtrees
• This preserves fragment parsability
• This allows lazy evaluation of structure nodes

• Also used for referring to graphic or other non-
directly-XML data objects

• References occur in the document instance:
• <PROCEDURE TYPE="REPAIR">

&warn37;&warn12;...</PROCEDURE>

• Declarations associate the name with a URI or a
“public identifier”

• A lexical mechanism for inclusion
• But, constrained to including subtrees
• This preserves fragment parsability
• This allows lazy evaluation of structure nodes

• Also used for referring to graphic or other non-
directly-XML data objects

• References occur in the document instance:
• <PROCEDURE TYPE="REPAIR">

&warn37;&warn12;...</PROCEDURE>

• Declarations associate the name with a URI or a
“public identifier”

General Entities (2/2)General Entities (2/2)
• Simple

• <!ENTITY % ent “value”>
• External

• <!ENTITY % include-file SYSTEM
“http://www.w3.org//”>

• Simple
• <!ENTITY % ent “value”>

• External
• <!ENTITY % include-file SYSTEM

“http://www.w3.org//”>

Entity ExamplesEntity Examples
• Common Entity Declarations

• <!ENTITY lt "&#60;">
• <!ENTITY gt ">">
• <!ENTITY amp "&#38;">
• <!ENTITY apos "'">
• <!ENTITY quot """>

• Character and Entity Reference
• Character: <
• Entity (Declaration above): < >

• Parameter-Entity Reference for order.dtd:
• Declaration: <!ENTITY % minibar.items "book | cdrom">
• Usage: <!ELEMENT item (%shop.items;)+>
• Means: item = (book | cdrom) +

• Common Entity Declarations
• <!ENTITY lt "&#60;">
• <!ENTITY gt ">">
• <!ENTITY amp "&#38;">
• <!ENTITY apos "'">
• <!ENTITY quot """>

• Character and Entity Reference
• Character: <
• Entity (Declaration above): < >

• Parameter-Entity Reference for order.dtd:
• Declaration: <!ENTITY % minibar.items "book | cdrom">
• Usage: <!ELEMENT item (%shop.items;)+>
• Means: item = (book | cdrom) +

Entity DeclarationEntity Declaration
• Entities – define storage units of an XML-

document. They are either parsed or unparsed.
• Allow for better maintenance
• Parsed entity – content is text replacement
• Unparsed entity – a resource whose content may or

may not be text (text may be other than XML)
• Very powerful tool for advanced usage, cf. XML

Specification for full details.
• Cannot redefine predefined entities.

• Entities – define storage units of an XML-
document. They are either parsed or unparsed.
• Allow for better maintenance
• Parsed entity – content is text replacement
• Unparsed entity – a resource whose content may or

may not be text (text may be other than XML)
• Very powerful tool for advanced usage, cf. XML

Specification for full details.
• Cannot redefine predefined entities.

Parameter EntitiesParameter Entities
• Declaring

• <!ENTITY % ent “value”>
• <!ENTITY % include-file SYSTEM

“http://www.w3.org//”>
• Using

• %include-file;
• <![option [<!… optional declaration …>]]>

• Declaring
• <!ENTITY % ent “value”>
• <!ENTITY % include-file SYSTEM

“http://www.w3.org//”>
• Using

• %include-file;
• <![option [<!… optional declaration …>]]>

Character ReferencesCharacter References
• Can be used to obtain untype-able

characters
• Such as Kanji for users with English

keyboards
• Map directly to a Unicode code point
• Represented much like entity references:

• Decimal: ㋱
• Hex: 뻯

• Schemas do not affect these

• Can be used to obtain untype-able
characters
• Such as Kanji for users with English

keyboards
• Map directly to a Unicode code point
• Represented much like entity references:

• Decimal: ㋱
• Hex: 뻯

• Schemas do not affect these

Comments (1/2)Comments (1/2)
<!-- a comment -->

Contents are ignored by the XML
processor
Cannot come before the XML declaration
Cannot appear inside an element tag

• May not include double hyphens

<!-- a comment -->
Contents are ignored by the XML
processor
Cannot come before the XML declaration
Cannot appear inside an element tag

• May not include double hyphens

Comments (2/2)Comments (2/2)
• Can go most anywhere

• (though not inside tags)
• Represented as:

• <!-- text of comment -->

• Have simpler syntax than in SGML/HTML
• Not <!-- foo -- -- bar -->

• Not <!-- foo -- >

• Schemas can contain comments, too

• Can go most anywhere
• (though not inside tags)

• Represented as:
• <!-- text of comment -->

• Have simpler syntax than in SGML/HTML
• Not <!-- foo -- -- bar -->

• Not <!-- foo -- >

• Schemas can contain comments, too

Marked SectionsMarked Sections
• Two purposes:

• Escaping a lot of markup
• Conditional inclusion

• In XML:
• Escaping only in the document instance:

• <![CDATA[<P>Hello</P>]]>

• Conditional content only in schemas:
• <![IGNORE[...]]>
• <![INCLUDE[...]]>

• Two purposes:
• Escaping a lot of markup
• Conditional inclusion

• In XML:
• Escaping only in the document instance:

• <![CDATA[<P>Hello</P>]]>

• Conditional content only in schemas:
• <![IGNORE[...]]>
• <![INCLUDE[...]]>

Processing InstructionsProcessing Instructions
• Form/example:

• <?target-name target-specific-stuff ?>

• <?xmleditor insertionpoint?>

• Used to insert instructions to processors

• Not commonly needed

• No way to escape “?>” inside

• May declare targets in DTD as Notations

• One special one: to identify XML documents
• <?xml version="1.0"?>

• Form/example:
• <?target-name target-specific-stuff ?>

• <?xmleditor insertionpoint?>

• Used to insert instructions to processors

• Not commonly needed

• No way to escape “?>” inside

• May declare targets in DTD as Notations

• One special one: to identify XML documents
• <?xml version="1.0"?>

Processing InstructionsProcessing Instructions
• Escape to procedural markup

• <!NOTATION my-app SYSTEM “http://my.com/”>
• <?my-app does something, anything …. ?>

• Escape hatch
• Way to add declarations to XML in some

cases
• Way to “pickle” application state in a

document.

• Escape to procedural markup
• <!NOTATION my-app SYSTEM “http://my.com/”>
• <?my-app does something, anything …. ?>

• Escape hatch
• Way to add declarations to XML in some

cases
• Way to “pickle” application state in a

document.

The “XML Declaration” PIThe “XML Declaration” PI
• At top of each XML document:
• <?XML version="1.0"

standalone="yes"
encoding="UTF-8"?>

• This marks the document as being XML
• “Encoding” can be double-checked

• You can detect the encoding from the first few
bytes, for many common ones (even EBCDIC)

• MIME types also can signal encoding
• (watch out if server re-encodes document)

• At top of each XML document:
• <?XML version="1.0"

standalone="yes"
encoding="UTF-8"?>

• This marks the document as being XML
• “Encoding” can be double-checked

• You can detect the encoding from the first few
bytes, for many common ones (even EBCDIC)

• MIME types also can signal encoding
• (watch out if server re-encodes document)

NotationsNotations
• Used to name foreign data formats referenced
• Ties a notation name to a URI (presumably

pointing to the format’s specification)
• Entities can state their data’s notation
• Processing instructions can (should) use them

as target names
• Declared in the schema

• <!NOTATION gif SYSTEM
“http://specs.com/gif10.html”>

• Can also use PUBLIC

• Used to name foreign data formats referenced
• Ties a notation name to a URI (presumably

pointing to the format’s specification)
• Entities can state their data’s notation
• Processing instructions can (should) use them

as target names
• Declared in the schema

• <!NOTATION gif SYSTEM
“http://specs.com/gif10.html”>

• Can also use PUBLIC

NotationsNotations
• Declaring

• <!NOTATION blob SYSTEM “application/binary”>

• Using (to declare entity datatypes)
• <!ENTITY something SYSTEM http://blob.org/blobel

• NDATA blob>

• Using an NDATA entity
• <!ATTLIST img ref ENTITY #REQUIRED>

• … in instance …

•

• Or one can just use URIs and MIME types in
software… less validation, more simplicity

• Declaring
• <!NOTATION blob SYSTEM “application/binary”>

• Using (to declare entity datatypes)
• <!ENTITY something SYSTEM http://blob.org/blobel

• NDATA blob>

• Using an NDATA entity
• <!ATTLIST img ref ENTITY #REQUIRED>

• … in instance …

•

• Or one can just use URIs and MIME types in
software… less validation, more simplicity

IdentifiersIdentifiers
• Used in entity declarations to state where the

data to be included later can be found
• <!ENTITY warning SYSTEM

"http://www.warnsource.com/w993.xml"
>

• Uses a URI reference
• Probably will later allow referencing subtrees directly

by appending an XPointer
• Accommodates persistent naming schemes

under development; but doesn’t define one.

• Used in entity declarations to state where the
data to be included later can be found

• <!ENTITY warning SYSTEM
"http://www.warnsource.com/w993.xml"
>

• Uses a URI reference
• Probably will later allow referencing subtrees directly

by appending an XPointer
• Accommodates persistent naming schemes

under development; but doesn’t define one.

The Need For A Better DTDThe Need For A Better DTD
• DTD in use for:

• Sharing/Reuse many (!!) grammars
• Validation by the parser
• Defaulting of values

• Weaknesses of the concept:
• DTD has a limited capability for specifying data types
• DTD requires its own language
• DTD provides incompatible set of data types with

those found in databases
• Example: DTD do not allow to specify element day

and month of Type Integer and within a certain
Range:
<day>32</day><month>13</month>

• DTD in use for:
• Sharing/Reuse many (!!) grammars
• Validation by the parser
• Defaulting of values

• Weaknesses of the concept:
• DTD has a limited capability for specifying data types
• DTD requires its own language
• DTD provides incompatible set of data types with

those found in databases
• Example: DTD do not allow to specify element day

and month of Type Integer and within a certain
Range:
<day>32</day><month>13</month>

Schema LanguagesSchema Languages
• 3 Leading contenders (all can win):
• XML Schema

• Backed by the W3C
• Very powerful
• Very large + Complex theory

• Relax/NG
• Backed by OASIS
• Based on tree automata
• Very small

• Schematron
• Independent effort
• Validation tool, not complete language

• 3 Leading contenders (all can win):
• XML Schema

• Backed by the W3C
• Very powerful
• Very large + Complex theory

• Relax/NG
• Backed by OASIS
• Based on tree automata
• Very small

• Schematron
• Independent effort
• Validation tool, not complete language

XML Schemas

XML SchemasXML Schemas
• XML Schema Definition Language (XSD)

• http://www.w3.org/XML/Schema
• XML Schemas provide a superset of the capabilities found in a

DTD
• Motivation:

• “While XML 1.0 supplies a mechanism, the Document Type
Definition (DTD) for declaring constraints on the use of markup,
automated processing of XML documents requires more rigorous
and comprehensive facilities in this area. Requirements are for
constraints on how the component parts of an application fit
together, the document structure, attributes, data-typing, and so
on.”

• Notes:
• W3C recommends “Schemas” as plural of schema
• XDR (XML-Data Reduced) was an early attempt by Microsoft to

define a Schema Language. XDR has been replaced by XSD

• XML Schema Definition Language (XSD)
• http://www.w3.org/XML/Schema
• XML Schemas provide a superset of the capabilities found in a

DTD
• Motivation:

• “While XML 1.0 supplies a mechanism, the Document Type
Definition (DTD) for declaring constraints on the use of markup,
automated processing of XML documents requires more rigorous
and comprehensive facilities in this area. Requirements are for
constraints on how the component parts of an application fit
together, the document structure, attributes, data-typing, and so
on.”

• Notes:
• W3C recommends “Schemas” as plural of schema
• XDR (XML-Data Reduced) was an early attempt by Microsoft to

define a Schema Language. XDR has been replaced by XSD

XML Schema SpecificationXML Schema Specification
• XML Schema Specification is partitioned into two

parts
• Part 1 specifies a language for defining composite

types (called complex types) that describe the content
model and attribute inventory of an XML element.

• Part 2 specifies a set of built-in primitive types and a
language for defining new primitive types (called
simple types) in terms of existing types.

• In addition to Parts 1 and 2, there is a primer to the
XML Schema language known as Part 0 that provides
an excellent overview of XML Schemas.
• http://www.w3.org/TR/xmlschema-0/

• XML Schema Specification is partitioned into two
parts
• Part 1 specifies a language for defining composite

types (called complex types) that describe the content
model and attribute inventory of an XML element.

• Part 2 specifies a set of built-in primitive types and a
language for defining new primitive types (called
simple types) in terms of existing types.

• In addition to Parts 1 and 2, there is a primer to the
XML Schema language known as Part 0 that provides
an excellent overview of XML Schemas.
• http://www.w3.org/TR/xmlschema-0/

XML Schema in short…XML Schema in short…
• XML - Meta-language for defining markup
• Schema - Formal specification of grammar

for a language (in XML!!!!)
• As such it inherits all the good “stuff”, we know

from XML
• Useful for validation, interchange etc.

• XML Schema - Language for writing
specifications

• XML - Meta-language for defining markup
• Schema - Formal specification of grammar

for a language (in XML!!!!)
• As such it inherits all the good “stuff”, we know

from XML
• Useful for validation, interchange etc.

• XML Schema - Language for writing
specifications

Solution: NamespacesSolution: Namespaces
• XML-Element written as <nsname:element>
• Help avoid element collision

• P – Paragraph in HTML
• P – Person in Address-Book DTD

• Namespace declaration
• Using the xmlns:nsname=value attribute
• URI is recommended for value

• Can be an attribute of any element; the scope is
inside the element’s tags

• XML-Element written as <nsname:element>
• Help avoid element collision

• P – Paragraph in HTML
• P – Person in Address-Book DTD

• Namespace declaration
• Using the xmlns:nsname=value attribute
• URI is recommended for value

• Can be an attribute of any element; the scope is
inside the element’s tags

NamespacesNamespaces
• Helps to “uniquify” markup names

• Colon delimiter allowed in names
• <cals:table>
<html:table xyz:key="2">

• Attributes associate a prefix with a
namespace URI

• <div xmlns:xhtml=
"http://www.w3.org/1999/xhtml">
• Sets default for element and descendants

• Helps to “uniquify” markup names
• Colon delimiter allowed in names
• <cals:table>
<html:table xyz:key="2">

• Attributes associate a prefix with a
namespace URI

• <div xmlns:xhtml=
"http://www.w3.org/1999/xhtml">
• Sets default for element and descendants

Namespaces: DeclarationNamespaces: Declaration
• Declaration scopes in root element

• <elem xmlns="uri1" xmlns:ns2="uri2" ... >
<ns2:elem />

</elem>
• elem defines all namespaces

• Declaration after usage
• <ns1:elem xmlns:ns1="uri1">

<ns2:elem xmlns:ns2="uri2"/>
</ns1:elem>

• Declaration scopes in root element
• <elem xmlns="uri1" xmlns:ns2="uri2" ... >

<ns2:elem />
</elem>

• elem defines all namespaces
• Declaration after usage

• <ns1:elem xmlns:ns1="uri1">
<ns2:elem xmlns:ns2="uri2"/>

</ns1:elem>

Things Namespace Almost DoThings Namespace Almost Do
• Allow arbitrary mixing of DTDs /Schemas
• Provide a “type system” for referents of

markup
• Allow automatic processing of foreign

markup

• Allow arbitrary mixing of DTDs /Schemas
• Provide a “type system” for referents of

markup
• Allow automatic processing of foreign

markup

Pros and Cons of NamespacesPros and Cons of Namespaces
• You can uniquely label element types in a

global way
• You can must change the element name to

take advantage of this
• Attempts to re-use large numbers of

namespace-qualified elements are often
clumsy/redundant

• Detection of a namespace is very easy
• There can only be one namespace for an

instance of an element

• You can uniquely label element types in a
global way

• You can must change the element name to
take advantage of this

• Attempts to re-use large numbers of
namespace-qualified elements are often
clumsy/redundant

• Detection of a namespace is very easy
• There can only be one namespace for an

instance of an element

Things are Confusing about NamespacesThings are Confusing about Namespaces

• The URI reference in a namespace is just a
string

• The URI reference in a namespace may not
exist, it’s just a string

• The URI reference in a namespace may exist
and contain something irrelevant or unexpected:
it’s just a string

• Relative URI references in namespaces are well-
defined, but don’t do what you might expect,
because they are just strings…

• Fragment identifiers are allowed in namespace
URIs, if you want to use them.

• The URI reference in a namespace is just a
string

• The URI reference in a namespace may not
exist, it’s just a string

• The URI reference in a namespace may exist
and contain something irrelevant or unexpected:
it’s just a string

• Relative URI references in namespaces are well-
defined, but don’t do what you might expect,
because they are just strings…

• Fragment identifiers are allowed in namespace
URIs, if you want to use them.

Example 1Example 1
• An employee

<person>
<first>Peter</first>
<last>Jones</last>
<code>4711</code>

<person>
• A customer

<person>
<first>Steve</first>
<last>Smith</last>
<code>0815</code>

<person>

• An employee
<person>

<first>Peter</first>
<last>Jones</last>
<code>4711</code>

<person>
• A customer

<person>
<first>Steve</first>
<last>Smith</last>
<code>0815</code>

<person>

first: string
last: string

Person

code:integer

Employee

code:integer

Customer

Example 2Example 2
• Porter (schemas applied)

<P:person xmlns:P=“urn:person”>
<P:first>Peter</P:first>
<P:last>Jones</P:last>

<E:employee xmlns:E=“urn:employee”>
<E:code >4711</E:code>

</E:employee>
</P:person>
Customer (schemas applied)
<P:person xmlns:P=“urn:person”>

<P:first>Steve</P:first>
<P:last>Smith</P:last>

<C:customer xmlns:C=“urn:customer”>
<C:code >0815</C:code>

</C:customer>
</P:person>

• Porter (schemas applied)
<P:person xmlns:P=“urn:person”>

<P:first>Peter</P:first>
<P:last>Jones</P:last>

<E:employee xmlns:E=“urn:employee”>
<E:code >4711</E:code>

</E:employee>
</P:person>
Customer (schemas applied)
<P:person xmlns:P=“urn:person”>

<P:first>Steve</P:first>
<P:last>Smith</P:last>

<C:customer xmlns:C=“urn:customer”>
<C:code >0815</C:code>

</C:customer>
</P:person>

Schema ElementSchema Element
• Root Element of a Schema

• <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
• XML Schema Namespace

• Each Element in the schema is prefixed by xsd: (xsd is only a
convention)

• Namespace declaration
xmlns:xsd="http://www.w3.org/2001/XMLSchema“

• The same prefix also appears on the names of built-in simple
types, e.g. xsd:string.

• Most notably Subelements:
• element
• complexType
• simpleType

• Root Element of a Schema
• <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

• XML Schema Namespace
• Each Element in the schema is prefixed by xsd: (xsd is only a

convention)
• Namespace declaration

xmlns:xsd="http://www.w3.org/2001/XMLSchema“
• The same prefix also appears on the names of built-in simple

types, e.g. xsd:string.
• Most notably Subelements:

• element
• complexType
• simpleType

Complex Type Definitions (1/3)Complex Type Definitions (1/3)
• Complex Types – Allow child elements and may carry

attributes
• Example: Element <USAddress> must consist of five

Elements and one Attribute
• <xsd:complexType name="USAddress" >
• <xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
• <xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US"/>
• </xsd:complexType>

• Complex Types – Allow child elements and may carry
attributes

• Example: Element <USAddress> must consist of five
Elements and one Attribute
• <xsd:complexType name="USAddress" >
• <xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
• <xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US"/>
• </xsd:complexType>

Complex Type Definitions (2/3)Complex Type Definitions (2/3)
• Use of Complex Types - Example:

• <xsd:complexType name="PurchaseOrderType">
• <xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/> <xsd:element

name="items" type="Items"/> </xsd:sequence>
• <xsd:attribute name="orderDate" type="xsd:date"/>
• </xsd:complexType>
• Use of shipTo and billTo Elements in XML requires that these

Elements have the five Subelements as defined in USAddress
• Ref Attribute (here its value is comment) indicates a Reference to

elsewhere declared Element (global Element)
• Comment Element here is optional due to Occurence Constraint

• Use of Complex Types - Example:
• <xsd:complexType name="PurchaseOrderType">
• <xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/> <xsd:element

name="items" type="Items"/> </xsd:sequence>
• <xsd:attribute name="orderDate" type="xsd:date"/>
• </xsd:complexType>
• Use of shipTo and billTo Elements in XML requires that these

Elements have the five Subelements as defined in USAddress
• Ref Attribute (here its value is comment) indicates a Reference to

elsewhere declared Element (global Element)
• Comment Element here is optional due to Occurence Constraint

Complex Type Definitions (3/3)Complex Type Definitions (3/3)
• Element occurrence constraints

• minOccurs
• Required if value is 1

• maxOccurs
• Bound, e.g. value is 42
• Unlimited if value is unbound

• Default value for both attributes is 1
• Attributes occurrence constraints

• Appear once or not at all
• Constraints by use-attribute with value: required, optional or prohibited
• Default value by default-attribute

• Example:
• (minOccurs, maxOccurs) fixed, default = (0, 2) -, 37

• Element may appear once, twice, or not at all
• If the Element does not appear it is not provided; if it does appear and it is

empty, its Value is 37; otherwise its value is that given

• Element occurrence constraints
• minOccurs

• Required if value is 1
• maxOccurs

• Bound, e.g. value is 42
• Unlimited if value is unbound

• Default value for both attributes is 1
• Attributes occurrence constraints

• Appear once or not at all
• Constraints by use-attribute with value: required, optional or prohibited
• Default value by default-attribute

• Example:
• (minOccurs, maxOccurs) fixed, default = (0, 2) -, 37

• Element may appear once, twice, or not at all
• If the Element does not appear it is not provided; if it does appear and it is

empty, its Value is 37; otherwise its value is that given

Simple Type Definitions (1/3)Simple Type Definitions (1/3)
• Simple Types – Cannot have element content

and cannot carry attributes. XML Schema has
more than 40 built in Simple Types, e.g. string,
integer, boolean, time, dateTime, date, gMonth,
anyURI, language

• Defining new Simple Types is allowed
• Derive and restrict existing simple type
• Define by simpleType element
• Use restriction sub-element to define Facets that

constrain the range of values

• Simple Types – Cannot have element content
and cannot carry attributes. XML Schema has
more than 40 built in Simple Types, e.g. string,
integer, boolean, time, dateTime, date, gMonth,
anyURI, language

• Defining new Simple Types is allowed
• Derive and restrict existing simple type
• Define by simpleType element
• Use restriction sub-element to define Facets that

constrain the range of values

Simple Type Definitions (2/3)Simple Type Definitions (2/3)
• Example – Use of Facet called pattern
• <xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>
• Derived from string value space
• Facet: three Digits followed by a Hyphen followed by

two upper-case ASCII Letters
• Other Facets available: Range, Enumeration,

List, Union

• Example – Use of Facet called pattern
• <xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>
• Derived from string value space
• Facet: three Digits followed by a Hyphen followed by

two upper-case ASCII Letters
• Other Facets available: Range, Enumeration,

List, Union

Simple Type Definitions (3/3)Simple Type Definitions (3/3)

Element Content (1/2)Element Content (1/2)
• Complex Types from Simple Types

• Example: <internationalPrice cur="EUR">
423.46</internationalPrice>

• <xsd:element name="internationalPrice">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:decimal">

<xsd:attribute name="cur" type="xsd:string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

• Complex Types from Simple Types
• Example: <internationalPrice cur="EUR">

423.46</internationalPrice>
• <xsd:element name="internationalPrice">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:decimal">
<xsd:attribute name="cur" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

Element Content (2/2)Element Content (2/2)
• Mixed Content

• Example:
<hello>Dear <name>Bebo White</name>.</hello>

• <xsd:element name="hello">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

• Mixed Content
• Example:

<hello>Dear <name>Bebo White</name>.</hello>
• <xsd:element name="hello">

<xsd:complexType mixed="true">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Power of XML SchemaPower of XML Schema
• Defining Complex Types by group

elements
• E.g. sequence, choice, group, all

• Support for maintenance and evolution
• Target Namespace
• Schemas in multiple documents (include)
• Deriving types by extension
• Abstract elements and types (abstract=“true”)
• Keys and references

• Defining Complex Types by group
elements
• E.g. sequence, choice, group, all

• Support for maintenance and evolution
• Target Namespace
• Schemas in multiple documents (include)
• Deriving types by extension
• Abstract elements and types (abstract=“true”)
• Keys and references

Developing SchemasDeveloping Schemas
• Use Tools:
• E.g. XMLSpy,
• XMLAuthority,
• Visual Studio.NET

Many other
exist

• Use Tools:
• E.g. XMLSpy,
• XMLAuthority,
• Visual Studio.NET

Many other
exist

XSL(T)

XSL (1/2)XSL (1/2)
• Extensible Stylesheet Language (XSL)
• Description of a transformation necessary
• “XSL is a language for expressing stylesheets.

Given a class of structured documents or data
files in XML, designers use an XSL stylesheet to
express their intentions about how that
structured content should be presented; that is,
how the source content should be styled, laid out
and paginated onto some presentation medium
such as a window in a Web browser or a set of
physical pages in a book, report, pamphlet, or
memo.” (http://www.w3.org/TR/WD-xsl/)

• Extensible Stylesheet Language (XSL)
• Description of a transformation necessary
• “XSL is a language for expressing stylesheets.

Given a class of structured documents or data
files in XML, designers use an XSL stylesheet to
express their intentions about how that
structured content should be presented; that is,
how the source content should be styled, laid out
and paginated onto some presentation medium
such as a window in a Web browser or a set of
physical pages in a book, report, pamphlet, or
memo.” (http://www.w3.org/TR/WD-xsl/)

XSL (2/2)XSL (2/2)
• Why Stylesheets?

• separation of content (XML) from
presentation (XSL)

• Why not just CSS for XML?
• XSL is far more powerful:

• selecting elements
• transforming the XML tree
• content based display (result may depend on

actual data values)

• Why Stylesheets?
• separation of content (XML) from

presentation (XSL)

• Why not just CSS for XML?
• XSL is far more powerful:

• selecting elements
• transforming the XML tree
• content based display (result may depend on

actual data values)

Why Transform?Why Transform?
• Convert one schema to another

• I say Level 1 Heading, you say Chapter

• Rearrange data for formatting
• Present style languages can’t re-order or

copy
• “see section <xref sid=‘sec37’/>…”

• Project or select document portions

• Convert one schema to another
• I say Level 1 Heading, you say Chapter

• Rearrange data for formatting
• Present style languages can’t re-order or

copy
• “see section <xref sid=‘sec37’/>…”

• Project or select document portions

Some Special TransformsSome Special Transforms
• XML to HTML— for old browsers
• XML to LaTEX—for TEX layout
• XML to SVG—graphs, charts, trees
• XML to tab-delimited—for db/stat

packages
• XML to plain-text—occasionally useful
• XML to FO—XSL formatting objects

• XML to HTML— for old browsers
• XML to LaTEX—for TEX layout
• XML to SVG—graphs, charts, trees
• XML to tab-delimited—for db/stat

packages
• XML to plain-text—occasionally useful
• XML to FO—XSL formatting objects

• The perspective is tree editing, not syntax
• Basic operations:

• Changes to node properties
• Structural rearrangement
• Several models for this kind of task

• The perspective is tree editing, not syntax
• Basic operations:

• Changes to node properties
• Structural rearrangement
• Several models for this kind of task

Document TransformationDocument Transformation

XSL Tranformations – XSL(T)XSL Tranformations – XSL(T)
• This specification defines the syntax and semantics of

XSL(T), which is a language for transforming XML
documents into other XML documents

• XSL specifies the styling of an XML document by using
XSL(T) to describe how the document is transformed into
another XML document that uses the formatting
vocabulary

• A transformation expressed in XSL(T) describes rules for
transforming a Source Tree into a Result Tree

• The transformation is achieved by associating patterns
with templates. A pattern is matched against elements in
the source tree. A template is instantiated to create a part
of the result tree

• http://www.w3.org/TR/xslt

• This specification defines the syntax and semantics of
XSL(T), which is a language for transforming XML
documents into other XML documents

• XSL specifies the styling of an XML document by using
XSL(T) to describe how the document is transformed into
another XML document that uses the formatting
vocabulary

• A transformation expressed in XSL(T) describes rules for
transforming a Source Tree into a Result Tree

• The transformation is achieved by associating patterns
with templates. A pattern is matched against elements in
the source tree. A template is instantiated to create a part
of the result tree

• http://www.w3.org/TR/xslt

XSL(T) OverviewXSL(T) Overview
• XSL stylesheets are denoted in XML

syntax
• XSL components:

1. a language for transforming XML
documents (XSL(T): integral part of the
XSL specification)

2. an XML formatting vocabulary
(Formatting Objects: >90% of the
formatting properties inherited from
CSS)

• XSL stylesheets are denoted in XML
syntax

• XSL components:
1. a language for transforming XML

documents (XSL(T): integral part of the
XSL specification)

2. an XML formatting vocabulary
(Formatting Objects: >90% of the
formatting properties inherited from
CSS)

XSL(T) Processing Model (1/3)XSL(T) Processing Model (1/3)
• XSL(T) takes

• A “source” XML document
• A transform (XSL(T) program)

• XSL(T) applies templates to found nodes
• (may delete or include the rest)
• (may process in document or tree or any

order)

• XSL(T) generates
• A “result” XML or text document

• XSL(T) takes
• A “source” XML document
• A transform (XSL(T) program)

• XSL(T) applies templates to found nodes
• (may delete or include the rest)
• (may process in document or tree or any

order)

• XSL(T) generates
• A “result” XML or text document

XSL(T) Processing Model (2/3)XSL(T) Processing Model (2/3)
• XSL stylesheet: collection of template

rules
• template rule: (pattern ⇒ template)
• main steps:

• match pattern against source tree
• instantiate template (replace current node “.”

by the template in the result tree)
• select further nodes for processing

• control can be a mix of
• recursive processing ("push": <xsl:apply-

templates> ...)
• program-driven ("pull": <xsl:foreach> ...)

• XSL stylesheet: collection of template
rules

• template rule: (pattern ⇒ template)
• main steps:

• match pattern against source tree
• instantiate template (replace current node “.”

by the template in the result tree)
• select further nodes for processing

• control can be a mix of
• recursive processing ("push": <xsl:apply-

templates> ...)
• program-driven ("pull": <xsl:foreach> ...)

XSL(T) Processing Model (3/3)XSL(T) Processing Model (3/3)

XML source tree XML,HTML,csv, text… result tree

XSL(T) stylesheet

Transformation

XSL(T) Elements (1/2)XSL(T) Elements (1/2)
• <xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• root element of an XSL(T) stylesheet "program"

• <xsl:template match=pattern name=qname
priority=number mode=qname>

• ...template...
• </xsl:template>

• declares a rule: (pattern => template)
• <xsl:apply-templates select = node-set-expression

mode = qname>
• apply templates to selected children (default=all)
• optional mode attribute

• <xsl:call-template name=qname>

• <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
• root element of an XSL(T) stylesheet "program"

• <xsl:template match=pattern name=qname
priority=number mode=qname>

• ...template...
• </xsl:template>

• declares a rule: (pattern => template)
• <xsl:apply-templates select = node-set-expression

mode = qname>
• apply templates to selected children (default=all)
• optional mode attribute

• <xsl:call-template name=qname>

XSL(T) Elements (2/2)XSL(T) Elements (2/2)
• Further XSL elements for ...

• Numbering
• <xsl:number value="position()" format="1 ">

• Conditions
• <xsl:if test="position() mod 2 = 0">

• Repetition...

• Further XSL elements for ...
• Numbering

• <xsl:number value="position()" format="1 ">

• Conditions
• <xsl:if test="position() mod 2 = 0">

• Repetition...

XSL(T) Processing ModelXSL(T) Processing Model
• Input in Form of a Tree

• Recursive process
• Checks for template when a new item is

encountered
• Transform source nodes into result nodes
• Rearranges the items based on style sheet

• Input in Form of a Tree
• Recursive process
• Checks for template when a new item is

encountered
• Transform source nodes into result nodes
• Rearranges the items based on style sheet

Creating the Result Tree:
Repetition
Creating the Result Tree:
Repetition

Creating the Result Tree:
Sorting
Creating the Result Tree:
Sorting

XSL(T) ExampleXSL(T) Example
• XML to XML
• Takes one XML document as source tree
• Apply templates using XSL(T) stylesheet
• Transforms it into another XML document

as a result tree (here the result tree
element are conform to HTML element
names;-)

• XML to XML
• Takes one XML document as source tree
• Apply templates using XSL(T) stylesheet
• Transforms it into another XML document

as a result tree (here the result tree
element are conform to HTML element
names;-)

Source TreeSource Tree

The BoilerplateThe Boilerplate

From Copy to TransformFrom Copy to Transform

XSL Style SheetXSL Style Sheet

(blatz.xsl)

ResultsResults

(View source)

• Functional
• Rewrite rule-based
• Template-based
• Imperative

• Functional
• Rewrite rule-based
• Template-based
• Imperative

Models for Tree EditingModels for Tree Editing

• Recursive processing
• Invoke start function at the root, construct a new

tree
• Can think of this as “node functions”
• Result is “compositional” — substitution is

generally nested
• Side effects often avoided: caching values,

clarity.

• Recursive processing
• Invoke start function at the root, construct a new

tree
• Can think of this as “node functions”
• Result is “compositional” — substitution is

generally nested
• Side effects often avoided: caching values,

clarity.

Functional Tree RewritingFunctional Tree Rewriting

Rule-based (Rewriting Systems)Rule-based (Rewriting Systems)
• A transformation is defined by a list of

pattern/result pairs
• Each is a piece of a tree with “holes” (variables)
• A match leads to replacement of the matched

tree nodes by a result tree
• Variables shared between pattern and result

allow preservation and rearrangement of
arbitrary data

• Poweful, incremental, definitions; non-
deterministic processing

• A transformation is defined by a list of
pattern/result pairs

• Each is a piece of a tree with “holes” (variables)
• A match leads to replacement of the matched

tree nodes by a result tree
• Variables shared between pattern and result

allow preservation and rearrangement of
arbitrary data

• Poweful, incremental, definitions; non-
deterministic processing

Template-based ProcessingTemplate-based Processing
• This is a model in which a pattern

document is the starting point
• This model is very familiar from many web-

based systems.
• It contains literal results interleaved with

queries and sometimes imperative code
• Well-suited to repetitive or rigid structures
• Often requires extensions to deal with

recursion and looping
• Frequently appropriate for database-style

XML

• This is a model in which a pattern
document is the starting point

• This model is very familiar from many web-
based systems.

• It contains literal results interleaved with
queries and sometimes imperative code

• Well-suited to repetitive or rigid structures
• Often requires extensions to deal with

recursion and looping
• Frequently appropriate for database-style

XML

ImperativeImperative
• Parser calls imperative code, which uses:

• Stacks
• Global variables
• Explicit output commands

• Result is a side effect.
• Reasoning about the program may be

hard, but creating it often starts out easily
• This approach makes it easy to create

non-XML, or ill-formed XML documents

• Parser calls imperative code, which uses:
• Stacks
• Global variables
• Explicit output commands

• Result is a side effect.
• Reasoning about the program may be

hard, but creating it often starts out easily
• This approach makes it easy to create

non-XML, or ill-formed XML documents

What’s the Biggest Drawback to Tree Editing?What’s the Biggest Drawback to Tree Editing?

• Buffering!
• You need a copy of the tree to edit
• This means that it’s very easy to build

transformer for a document entirely in-memory
• Doing this from secondary storage is fairly subtle,

and has its own performance penalties
• This is a complex speed/size/coding effort

tradeoff
• This is one reason imperative approaches

are sometimes appealing even to purists.

• Buffering!
• You need a copy of the tree to edit
• This means that it’s very easy to build

transformer for a document entirely in-memory
• Doing this from secondary storage is fairly subtle,

and has its own performance penalties
• This is a complex speed/size/coding effort

tradeoff
• This is one reason imperative approaches

are sometimes appealing even to purists.

What Side are We On?What Side are We On?
• XSL(T) falls squarely in the middle
• Styles of XSL(T) transform

• Functional
• Rule-based
• Template-based
• Imperative (although unusual)

• XSL(T) falls squarely in the middle
• Styles of XSL(T) transform

• Functional
• Rule-based
• Template-based
• Imperative (although unusual)

• Rule-based substitution (but results are like
template languages)

• XPath addressing also looks like queries in
traditional template languages

• Limited non-determinism
• Sufficient control over rule evaluation order that

functional transformations are easy

• Rule-based substitution (but results are like
template languages)

• XPath addressing also looks like queries in
traditional template languages

• Limited non-determinism
• Sufficient control over rule evaluation order that

functional transformations are easy

XSL(T) and Transformation StylesXSL(T) and Transformation Styles

Where does XSL(T) Fit?Where does XSL(T) Fit?
• Dependencies

• XML -> XPath -> XSL(T) -> XSL

• The WGs involved
• XSL Working Group

+XML Linking for XPath

• Status
• Full W3C Recommendation, in wide use
• http://www.w3.org/TR/xsl/

• Dependencies
• XML -> XPath -> XSL(T) -> XSL

• The WGs involved
• XSL Working Group

+XML Linking for XPath

• Status
• Full W3C Recommendation, in wide use
• http://www.w3.org/TR/xsl/

XML Documents as Trees of NodesXML Documents as Trees of Nodes
• Root
• Elements
• Attributes
• Text Nodes (not characters)
• Namespaces
• Processing Instructions
• Comments

• Root
• Elements
• Attributes
• Text Nodes (not characters)
• Namespaces
• Processing Instructions
• Comments

XML Document OrderXML Document Order
• Root -- First
• Elements -- Occur in order of their starts
• Text Nodes -- As if children (leaves)
• Attributes, namespaces -- Attached to

element, unordered
• PIs, comments -- Leaves like text nodes

• Root -- First
• Elements -- Occur in order of their starts
• Text Nodes -- As if children (leaves)
• Attributes, namespaces -- Attached to

element, unordered
• PIs, comments -- Leaves like text nodes

XML NotionsXML Notions
• XML declaration: identifies a document as

intending to conform to XML rules
• DTD or schema: rules for permissible

elements and attributes for a genre
• Well-formedness: correct XML syntax,

but maybe not valid to specified DTD
• XML name: token ok as element/attr

names
• Stylesheet PI: links document to

stylesheet

• XML declaration: identifies a document as
intending to conform to XML rules

• DTD or schema: rules for permissible
elements and attributes for a genre

• Well-formedness: correct XML syntax,
but maybe not valid to specified DTD

• XML name: token ok as element/attr
names

• Stylesheet PI: links document to
stylesheet

What’s Inside an XSL(T) Transform?What’s Inside an XSL(T) Transform?
• Any number of “templates”
• A template uses Xpath to match nodes
• Highest priority matching template selected
• Then the template takes over and generates:

• Literal output XML (based on namespace)
• Computational results (of XSL(T) functions)
• Results of further template applications
• Results of queries on the document

• Many options

• Any number of “templates”
• A template uses Xpath to match nodes
• Highest priority matching template selected
• Then the template takes over and generates:

• Literal output XML (based on namespace)
• Computational results (of XSL(T) functions)
• Results of further template applications
• Results of queries on the document

• Many options

What Goes in a Template?What Goes in a Template?
• Literal XML to output
• “Pull” references to other content
• Instructions to generate more output

• Setting and using variables
• Invoking other templates like macros
• Manually constructed XML constructs
• Conditional instructions (if, choose, etc.)
• Auto-numbering hacks

• Literal XML to output
• “Pull” references to other content
• Instructions to generate more output

• Setting and using variables
• Invoking other templates like macros
• Manually constructed XML constructs
• Conditional instructions (if, choose, etc.)
• Auto-numbering hacks

How Do You Apply One?How Do You Apply One?
• Refer via “Stylesheet PI”

• Defined in W3C “xml-stylesheet” rec
• <?xml-stylesheet href=“URI”

type=“”
title=“”
media=””
charset=“”
alternate=“yes” ?>

• Apply via standalone program
• E.g. XT, Xalon, Saxon (see Web for latest versions)

• Refer via “Stylesheet PI”
• Defined in W3C “xml-stylesheet” rec
• <?xml-stylesheet href=“URI”

type=“”
title=“”
media=””
charset=“”
alternate=“yes” ?>

• Apply via standalone program
• E.g. XT, Xalon, Saxon (see Web for latest versions)

CaveatsCaveats
• Many constructs have extra options
• These are more constructs
• We will not cover all these
• For example:

– <xsl:stylesheet id=“ID”
extension-element-prefixes=“my-Fns”
enclose-result-prefixes=“html”
version=“1.0”
xml:space=“default”>

• Many constructs have extra options
• These are more constructs
• We will not cover all these
• For example:

– <xsl:stylesheet id=“ID”
extension-element-prefixes=“my-Fns”
enclose-result-prefixes=“html”
version=“1.0”
xml:space=“default”>

Template StylesTemplate Styles
• Push vs. Pull templates
• Or:

• Fill-in-the-blanks
• Looks like output document with pulls to merge

• Navigation
• Adds top-level <xsl:transform>, macros

• Rule-based
• Conceptually, a template for each elemet type

• Computational
• Gory processing to generate markup from none

• Push vs. Pull templates
• Or:

• Fill-in-the-blanks
• Looks like output document with pulls to merge

• Navigation
• Adds top-level <xsl:transform>, macros

• Rule-based
• Conceptually, a template for each elemet type

• Computational
• Gory processing to generate markup from none

At the Top LevelAt the Top Level
• Key thing: templates
• Also several option-settings:

• <xsl:include> -- must be first
• <xsl:import>
• <xsl: strip-space> or <xsl:preserve-space>
• <xsl:output>, <xsl:decimal-format>
• <xsl:keys>, <xsl:namespace-alias>
• <xsl:attribute-set>, <xsl:variable>, <xsl:param>

• Most of these are more advanced….

• Key thing: templates
• Also several option-settings:

• <xsl:include> -- must be first
• <xsl:import>
• <xsl: strip-space> or <xsl:preserve-space>
• <xsl:output>, <xsl:decimal-format>
• <xsl:keys>, <xsl:namespace-alias>
• <xsl:attribute-set>, <xsl:variable>, <xsl:param>

• Most of these are more advanced….

Anatomy of a TemplateAnatomy of a Template
• XPath to select elements to apply template

to
• (this is where programming/scripting comes in)

• XML to output, for each instance selected
• Embedded within that output:

• XSL(T) “instruction” elements
• Literal output (including XML tags)
• References to content to transclude
• Place to put results of transforming the

element’s children (if desired)

• XPath to select elements to apply template
to
• (this is where programming/scripting comes in)

• XML to output, for each instance selected
• Embedded within that output:

• XSL(T) “instruction” elements
• Literal output (including XML tags)
• References to content to transclude
• Place to put results of transforming the

element’s children (if desired)

Trivial Templates: Tag RenamingTrivial Templates: Tag Renaming
• <xsl:template match=”div[@type=‘idx’]">

<index>
<xsl:apply-templates/>

</index>
</xsl:template>

• <xsl:template match=”div1">
<div level=‘’>

<xsl:process-children/>
</div>

</xsl:template>

• <xsl:template match=”div[@type=‘idx’]">
<index>

<xsl:apply-templates/>
</index>

</xsl:template>

• <xsl:template match=”div1">
<div level=‘’>

<xsl:process-children/>
</div>

</xsl:template>

Template OptionsTemplate Options
• Match = “xpath”

• Which elements to apply template to

• Name = “qname”
• Name a template for later reference
• Mode -- (limit template to work in a certain

named ‘mode’ -- more later)

• xml:space = “default|preserve”
• Override inherited space-handling

• Priority=“n” -- for conflicting rules

• Match = “xpath”
• Which elements to apply template to

• Name = “qname”
• Name a template for later reference
• Mode -- (limit template to work in a certain

named ‘mode’ -- more later)

• xml:space = “default|preserve”
• Override inherited space-handling

• Priority=“n” -- for conflicting rules

The Ultimate DefaultThe Ultimate Default
• Elements are not copied
• Attribute values and text are copied,
• Thus a transform with no templates except

for the root, strips markup from a
document
• <xsl:transform>

<xsl:template match=“//”>
</xsl:template>

</xsl:transform>

• Elements are not copied
• Attribute values and text are copied,
• Thus a transform with no templates except

for the root, strips markup from a
document
• <xsl:transform>

<xsl:template match=“//”>
</xsl:template>

</xsl:transform>

Priority ExamplePriority Example
• Delete all nested <list>s

<xsl:template match=”list/list”
priority=“2”>
<!-- deleted nested list -->

</xsl:template>

<xsl:template match=”list”
priority=“1”>
<list><xsl:apply-templates></list>

</xsl:template>

• Delete all nested <list>s
<xsl:template match=”list/list”

priority=“2”>
<!-- deleted nested list -->

</xsl:template>

<xsl:template match=”list”
priority=“1”>
<list><xsl:apply-templates></list>

</xsl:template>

Template PriorityTemplate Priority
• Multiple templates may match an element

• <template priority=‘3’ match=‘h1’>
<template priority=‘5’ match=“@class=‘big’”>
<template priority=‘9’ match=“h1[@id=‘S1’]”>

• Highest priority number wins
• Priorities are integers, including negative
• There are also default rules

• All have priority -0.5 <= p <= +0.5

• Multiple templates may match an element
• <template priority=‘3’ match=‘h1’>

<template priority=‘5’ match=“@class=‘big’”>
<template priority=‘9’ match=“h1[@id=‘S1’]”>

• Highest priority number wins
• Priorities are integers, including negative
• There are also default rules

• All have priority -0.5 <= p <= +0.5

What Goes in a Template?What Goes in a Template?
• Literal XML to output
• “Pull” references to other content
• Instructions to generate more output

• Setting and using variables
• Invoking other templates like macros
• Manually constructed XML constructs
• Conditional instructions (if, choose, etc.)
• Auto-numbering hacks

• Literal XML to output
• “Pull” references to other content
• Instructions to generate more output

• Setting and using variables
• Invoking other templates like macros
• Manually constructed XML constructs
• Conditional instructions (if, choose, etc.)
• Auto-numbering hacks

Instructions: apply-templatesInstructions: apply-templates
• <xsl:apply-templates select=“xpath”

mode=“qname”>

• Main use (no attributes or content):
• mark where to include result of processing children

• select
• Include certain children:

• select=“[secure=‘public’]”

• “Pull” (transclude) anything from elsewhere:
• select=“//[id=‘warning17’]”

• Mode: Apply only templates of this mode

• <xsl:apply-templates select=“xpath”
mode=“qname”>

• Main use (no attributes or content):
• mark where to include result of processing children

• select
• Include certain children:

• select=“[secure=‘public’]”

• “Pull” (transclude) anything from elsewhere:
• select=“//[id=‘warning17’]”

• Mode: Apply only templates of this mode

Keeping Things in VariablesKeeping Things in Variables
• 2 types (names are XML qnames):

• Variables are assigned once and for all
• Parameters can be overridden later

• Value types:
• A template
• The result of instantiating a template
• Node-set, string, Boolean, or number

• An RTF is a restricted type of node-set

• References: $varname

• 2 types (names are XML qnames):
• Variables are assigned once and for all
• Parameters can be overridden later

• Value types:
• A template
• The result of instantiating a template
• Node-set, string, Boolean, or number

• An RTF is a restricted type of node-set

• References: $varname

Setting XSL(T) VariablesSetting XSL(T) Variables
• Default parameters declared at top level

• <xsl:param name=‘p’ select=‘s’/>

or

• <xsl:param name=‘p’>
<template>…</template>

</xsl:param>

• Override via similar xsl:with-param
• <xsl:with-param name=‘p’>

<template>…</template>
</xsl:param>

• Default parameters declared at top level

• <xsl:param name=‘p’ select=‘s’/>

or

• <xsl:param name=‘p’>
<template>…</template>

</xsl:param>

• Override via similar xsl:with-param
• <xsl:with-param name=‘p’>

<template>…</template>
</xsl:param>

Instructions: call-templateInstructions: call-template
• Invoke a template (like a subroutine)

<xsl:call-template name=‘t’>
<xsl:with-param name=‘p’
select=‘xpath’>

</xsl:call-template>

• Invoke a template (like a subroutine)
<xsl:call-template name=‘t’>

<xsl:with-param name=‘p’
select=‘xpath’>

</xsl:call-template>

Using XSL(T) VariablesUsing XSL(T) Variables
• Limited processing can be done on RTFs

• Mainly string processing

• Embed variables via $varname
• Can do for markup as well as content
• Can process via functions

• Limited processing can be done on RTFs
• Mainly string processing

• Embed variables via $varname
• Can do for markup as well as content
• Can process via functions

Data Handling via FunctionsData Handling via Functions
• For strings
• For numbers
• For truth values
• For XML information

• For strings
• For numbers
• For truth values
• For XML information

String ValuesString Values
• Anything can be cast to a string

• Boolean: “true” or “false”
• Numbers: To decimal
• Nodes:

• Root, Elements: character content of all
descendants

• Text nodes: the character content
• Attributes: the attribute value
• Comments, PIs: the character content
• Namespaces: the namespace’s URI

• Anything can be cast to a string
• Boolean: “true” or “false”
• Numbers: To decimal
• Nodes:

• Root, Elements: character content of all
descendants

• Text nodes: the character content
• Attributes: the attribute value
• Comments, PIs: the character content
• Namespaces: the namespace’s URI

For StringsFor Strings
• String(object) -- explicit type-cast
• Concat(s1, s2, s3,…) -- concatenate
• Substring(s, offset, length)

• Substring-after(s,s), Substring-before(s,s)
• Translate(s,from,to)

• Substitute chars in ‘from’, with ones from ‘to’
• Normalize-space(s) -- delete extra whitespace
• Contains(s1,s2), starts-with(s1,s2)

• Returns true or false
• String-length(s) -- length in characters

• String(object) -- explicit type-cast
• Concat(s1, s2, s3,…) -- concatenate
• Substring(s, offset, length)

• Substring-after(s,s), Substring-before(s,s)
• Translate(s,from,to)

• Substitute chars in ‘from’, with ones from ‘to’
• Normalize-space(s) -- delete extra whitespace
• Contains(s1,s2), starts-with(s1,s2)

• Returns true or false
• String-length(s) -- length in characters

For Numbers and LogicFor Numbers and Logic
• Number
• Ceiling, Floor, Round, Sum

• Boolean
• True, False, Not

• Number
• Ceiling, Floor, Round, Sum

• Boolean
• True, False, Not

<xsl:value-of><xsl:value-of>
• <xsl:value-of select=“expr”

disable-output-escaping=“yes|no”>

• Outputs the string value of the selected
node(s).

• Any type can be cast to string.

• <xsl:value-of select=“expr”
disable-output-escaping=“yes|no”>

• Outputs the string value of the selected
node(s).

• Any type can be cast to string.

<xsl:copy-of><xsl:copy-of>
• <xsl:copy-of select=“expr”/>

• No content allowed

• Select attribute picks what to copy
• Using the usual XPath method

• The result is copied
• A node-set is copied (entire forest of subtrees)
• An RTF is copied (likewise)
• Anything else is cast to a string that is copied

• No processing is allowed enroute

• <xsl:copy-of select=“expr”/>
• No content allowed

• Select attribute picks what to copy
• Using the usual XPath method

• The result is copied
• A node-set is copied (entire forest of subtrees)
• An RTF is copied (likewise)
• Anything else is cast to a string that is copied

• No processing is allowed enroute

<xsl:copy><xsl:copy>
<xsl:copy use-attribute-sets

=“qnames”>
<xsl:template>…</xsl:template>

</xsl:copy>

• Generates the start- and end-tags
• Does not include attributes or children

• May contain <xsl:apply-templates/> etc.

<xsl:copy use-attribute-sets
=“qnames”>
<xsl:template>…</xsl:template>

</xsl:copy>

• Generates the start- and end-tags
• Does not include attributes or children

• May contain <xsl:apply-templates/> etc.

<xsl:if><xsl:if>
<xsl:if test=“boolean-expr”>

<xsl:template>…
</xsl:if>

• Applies the template only if the expression
evaluates to true.
• These can be nested
• No ‘else’ construct
• See also xsl:choose (=case or switch)

• E.g.: Test=“@show=‘T’”

<xsl:if test=“boolean-expr”>
<xsl:template>…

</xsl:if>

• Applies the template only if the expression
evaluates to true.
• These can be nested
• No ‘else’ construct
• See also xsl:choose (=case or switch)

• E.g.: Test=“@show=‘T’”

<xsl:choose><xsl:choose>
• Like select/switch/case statement

• Good for handling enumerated attributes
<xsl:choose>
<xsl:when test=“boolean-expr”>
<xsl:template>…

</xsl:when>
…
<xsl:otherwise>
<xsl:template>…

</xsl:otherwise>
</xsl:choose>

• Like select/switch/case statement
• Good for handling enumerated attributes
<xsl:choose>
<xsl:when test=“boolean-expr”>
<xsl:template>…

</xsl:when>
…
<xsl:otherwise>
<xsl:template>…

</xsl:otherwise>
</xsl:choose>

<xsl:for-each><xsl:for-each>
• <xsl:for-each select=“node-set-expr”>
• May contain:

• Xsl:sort -- any number of keys
• Template

• Applies template to each node found
• <xsl:sort select=“string-expr” lang=“lg”

data-type=“text|number|qname”
order=“ascending|descending”
case-order=“upper-first|lower-first”>

• <xsl:for-each select=“node-set-expr”>
• May contain:

• Xsl:sort -- any number of keys
• Template

• Applies template to each node found
• <xsl:sort select=“string-expr” lang=“lg”

data-type=“text|number|qname”
order=“ascending|descending”
case-order=“upper-first|lower-first”>

<xsl:apply-imports><xsl:apply-imports>
• Affects templates imported via xsl:import

that would not otherwise by applied
• Imported templates have lowest priority
• Invoke from within a template

• Affects templates imported via xsl:import
that would not otherwise by applied

• Imported templates have lowest priority
• Invoke from within a template

<xsl:variable><xsl:variable>
• Declares a variable

• Variables are scoped to where declared

<xsl:variable name=“qname” select=“expr”>
<xsl:template>…

• Declares a variable
• Variables are scoped to where declared

<xsl:variable name=“qname” select=“expr”>
<xsl:template>…

<xsl:message><xsl:message>
• Issues a message to the output

• terminate=‘yes|no’

• Message is specified via contained
template
• Thus may include data from source

• Issues a message to the output
• terminate=‘yes|no’

• Message is specified via contained
template
• Thus may include data from source

<xsl:fallback><xsl:fallback>
• Provides backup for when an instruction

fails
• Contains template to use

• Example:
• trying to use an unknown extension

instruction

• Provides backup for when an instruction
fails
• Contains template to use

• Example:
• trying to use an unknown extension

instruction

<xsl:number><xsl:number>
• Used to generate auto-numbering

<xsl:number
level=“single|multiple|any”
count=“pattern” -- which nodes count?
from=“pattern” -- starting point
value=“number-expr” -- force value
format=“s” -- (not covering)
lang=“lg” -- lang to use
letter-value=“alphabetic|traditional”
grouping-separator=“char” -- 1,000
grouping-size=“number” -- 3 in EN

/>

• Used to generate auto-numbering
<xsl:number

level=“single|multiple|any”
count=“pattern” -- which nodes count?
from=“pattern” -- starting point
value=“number-expr” -- force value
format=“s” -- (not covering)
lang=“lg” -- lang to use
letter-value=“alphabetic|traditional”
grouping-separator=“char” -- 1,000
grouping-size=“number” -- 3 in EN

/>

Numbering ExampleNumbering Example
<xsl:template select=“list”>

<xsl:element name=“toplist”>
<xsl:attribute name=“marker”>
<xsl:number level=“single”/>
<!--count defaults to siblings-->

</xsl:attribute>
</xsl:element>

</xsl:template>
• ‘multiple’ -- gathers up sibling numbers of ancestors
• <xsl:number level=“multiple”

format=“1.1.1” count=“chap|sec|ssec”/>

<xsl:template select=“list”>
<xsl:element name=“toplist”>
<xsl:attribute name=“marker”>
<xsl:number level=“single”/>
<!--count defaults to siblings-->

</xsl:attribute>
</xsl:element>

</xsl:template>
• ‘multiple’ -- gathers up sibling numbers of ancestors
• <xsl:number level=“multiple”

format=“1.1.1” count=“chap|sec|ssec”/>

Building XML from PartsBuilding XML from Parts
• Why?

• Generate element type name, etc. by
expression

• Content is any template

• <xsl:element name=“qname” namespace=“uri” use-
attribute-sets=“qnames”>

• <xsl:attribute name=“qname” namespace=“uri”>
• <xsl:processing-instruction name=“ncname”>
• <xsl:comment>
• <xsl:text disable-output-escaping=“yes”>

• Why?
• Generate element type name, etc. by

expression
• Content is any template

• <xsl:element name=“qname” namespace=“uri” use-
attribute-sets=“qnames”>

• <xsl:attribute name=“qname” namespace=“uri”>
• <xsl:processing-instruction name=“ncname”>
• <xsl:comment>
• <xsl:text disable-output-escaping=“yes”>

Oddities of XPath and XSL(T)Oddities of XPath and XSL(T)
• Navigational language for specifying

pattern matches
• You specify the tree pattern implicitly by

specifying a query for a node where a
pattern will be replaced

• This sometimes makes the structure less
explicit

• You can invoke further processing on
children

• You use template-style access functions
rather than pattern variables

• Navigational language for specifying
pattern matches

• You specify the tree pattern implicitly by
specifying a query for a node where a
pattern will be replaced

• This sometimes makes the structure less
explicit

• You can invoke further processing on
children

• You use template-style access functions
rather than pattern variables

Surface OdditiesSurface Oddities
• The language is a mixture of predicate /

query and structural pattern
• Unix path syntax and query syntax syntax

make a peculiar mix
• Matching within XSL(T) is always relative

to a particular node, so the first few times
results can be very puzzling

• The language is a mixture of predicate /
query and structural pattern

• Unix path syntax and query syntax syntax
make a peculiar mix

• Matching within XSL(T) is always relative
to a particular node, so the first few times
results can be very puzzling

Strategies for XSL(T)Strategies for XSL(T)
• Try to pick a single style as much as

possible
• May vary by project
• Mixing may be necessary but can get

confusing
• Be sure you understand (and probably

override the default rules)
• Shorter patterns are better

• <xsl:value-of> and <xsl:if> may be easier to
deal with than a complex path

• Try to pick a single style as much as
possible
• May vary by project
• Mixing may be necessary but can get

confusing
• Be sure you understand (and probably

override the default rules)
• Shorter patterns are better

• <xsl:value-of> and <xsl:if> may be easier to
deal with than a complex path

Strategies…Strategies…
• Use several filters in row

• It’s often easier to manage a series of global
changes, than interactions between several
complex conditions.

• Intermediate results make debugging easier
• Intermediate results may be cacheable

• Critical for online applications

• Where possible code things one element
at a time

• Use several filters in row
• It’s often easier to manage a series of global

changes, than interactions between several
complex conditions.

• Intermediate results make debugging easier
• Intermediate results may be cacheable

• Critical for online applications

• Where possible code things one element
at a time

More on XSL(T)More on XSL(T)
• XSL(T):

• Conflict resolution for multiple applicable rules
• Modularization <xsl:include> <xsl:import>
• …

• XSL Formatting Objects
• a la CSS

• XPath (navigation syntax + functions)
• = XSL(T) ∩ XPointer
• xslt.com, xml.com

• XSL(T):
• Conflict resolution for multiple applicable rules
• Modularization <xsl:include> <xsl:import>
• …

• XSL Formatting Objects
• a la CSS

• XPath (navigation syntax + functions)
• = XSL(T) ∩ XPointer
• xslt.com, xml.com

Example

Example 3Example 3
<xsd:schema id="person" targetNamespace="urn:person“

xmlns="urn:person“
xmlns:xsd="http://www.w3.org/2001/XMLSchema“
attributeFormDefault="qualified“
elementFormDefault="qualified">

<xsd:element name="person">
<xsd:complexType>

<xsd:sequence>
<xsd:any namespace=“urn:employee“ />
<xsd:any namespace="urn:customer" />
<xsd:element name="first" type="xsd:string“ minOccurs="0" />
<xsd:element name="last" type="xsd:string" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

<xsd:schema id="person" targetNamespace="urn:person“
xmlns="urn:person“
xmlns:xsd="http://www.w3.org/2001/XMLSchema“
attributeFormDefault="qualified“
elementFormDefault="qualified">

<xsd:element name="person">
<xsd:complexType>

<xsd:sequence>
<xsd:any namespace=“urn:employee“ />
<xsd:any namespace="urn:customer" />
<xsd:element name="first" type="xsd:string“ minOccurs="0" />
<xsd:element name="last" type="xsd:string" minOccurs="0" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Example 4Example 4
<xs:schema id="customer"

targetNamespace="urn:customer“
xmlns="urn:customer“
xmlns:xs="http://www.w3.org/2001/XMLSchema“
attributeFormDefault="qualified"
elementFormDefault="qualified">

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="code" type="xs:int"

minOccurs="0" />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

<xs:schema id="customer"
targetNamespace="urn:customer“
xmlns="urn:customer“
xmlns:xs="http://www.w3.org/2001/XMLSchema“
attributeFormDefault="qualified"
elementFormDefault="qualified">

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="code" type="xs:int"

minOccurs="0" />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Example 5: Room Entity (1/3)Example 5: Room Entity (1/3)
• Pay attention to database design
• E.g. containment design does not

scale…
<room number=“R10”>

<descr>A very nice room</descr>
<booked>Reseller Wonder Travel
Corp. </booked>

</room>
<room number=“R11”>

<descr>A very nice room</descr>
<booked>Reseller Wonder Travel
Corp. </booked>

</room>

• Pay attention to database design
• E.g. containment design does not

scale…
<room number=“R10”>

<descr>A very nice room</descr>
<booked>Reseller Wonder Travel
Corp. </booked>

</room>
<room number=“R11”>

<descr>A very nice room</descr>
<booked>Reseller Wonder Travel
Corp. </booked>

</room>

Number: String, PK

Room

Name:
#PCDATA

Descr
Text:
#PCDATA

Booked

Example 5: Room Entity (2/3)Example 5: Room Entity (2/3)
• Structural Linking
<room number=“R10”>

<descr href=“Nice”/></room>
<room number=“R11”>

<descr href=“Nice”/></room>

<descr type=“Nice”>A very nice room</descr>

<booked roomref=“R10” by=“MrG”/>
<booked roomref=“R11” by=“MrG”/>
<Guest gid=“MrG”>

Reseller Wonder Travel Corp. </Guest>
…

• Structural Linking
<room number=“R10”>

<descr href=“Nice”/></room>
<room number=“R11”>

<descr href=“Nice”/></room>

<descr type=“Nice”>A very nice room</descr>

<booked roomref=“R10” by=“MrG”/>
<booked roomref=“R11” by=“MrG”/>
<Guest gid=“MrG”>

Reseller Wonder Travel Corp. </Guest>
…

Example 5: Room Entity (3/3)Example 5: Room Entity (3/3)
• Logical design

• DTD or XML-Schema, e.g. ID and
IDREF

<booked roomref=“R10” by=“MrG”/>
<Guest gid=“MrG”>…

• Shift to Physical Design
• E.g. XML or Database/SQL
• If XML other opportunities…

• Logical design
• DTD or XML-Schema, e.g. ID and

IDREF
<booked roomref=“R10” by=“MrG”/>
<Guest gid=“MrG”>…

• Shift to Physical Design
• E.g. XML or Database/SQL
• If XML other opportunities…

Rethinking: The Room EntityRethinking: The Room Entity
• Physical Design using XML

• Adding a semantic support
• E.g. enhance using

Resource Description Framework (RDF)

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns="http://hotel/rdf/syntax#">
<room rdf:about=“http://hotel/room/R10”>

<descr rdf:resource=“http://hotel/descr/Nice”/>
</room>

…

• Physical Design using XML
• Adding a semantic support
• E.g. enhance using

Resource Description Framework (RDF)

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns="http://hotel/rdf/syntax#">
<room rdf:about=“http://hotel/room/R10”>

<descr rdf:resource=“http://hotel/descr/Nice”/>
</room>

…

XHTML

What is XHTML?What is XHTML?
“A reformulation of HTML in XML.”

—W3C http://www.w3.org/TR/xhtml1/

The power of XML (kind of)

The simplicity of HTML (mostly)

XHTML is XML that acts like HTML in
browsers.

“A reformulation of HTML in XML.”
—W3C http://www.w3.org/TR/xhtml1/

The power of XML (kind of)

The simplicity of HTML (mostly)

XHTML is XML that acts like HTML in
browsers.

From happycog.com

XHTML IntroductionXHTML Introduction
• The Extensible HyperText Markup Language

(XHTML™)
• W3C Recommendation 26 January 2000
• http://www.w3.org/TR/2000/REC-xhtml1-20000126

• Specification defines XHTML 1.0, a reformulation
of HTML 4 as an XML 1.0 application

• Three DTDs corresponding to the ones defined
by HTML 4

• Semantics of the elements and their attributes
are defined in the W3C Recommendation for
HTML 4

• The Extensible HyperText Markup Language
(XHTML™)
• W3C Recommendation 26 January 2000
• http://www.w3.org/TR/2000/REC-xhtml1-20000126

• Specification defines XHTML 1.0, a reformulation
of HTML 4 as an XML 1.0 application

• Three DTDs corresponding to the ones defined
by HTML 4

• Semantics of the elements and their attributes
are defined in the W3C Recommendation for
HTML 4

Example XHTML DocumentExample XHTML Document
• Document Root element html
• Referencing xhtml namespace
• Elements and attributes must conform to XML notation rules

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "DTD/xhtml1-

strict.dtd">
<html

xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><title>XHTML Example</title></head>
<body>

<p>XHTML is great. </p> <hr/>
<p>A

WebE-Link.</p>
</body>

</html>

• Document Root element html
• Referencing xhtml namespace
• Elements and attributes must conform to XML notation rules

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "DTD/xhtml1-

strict.dtd">
<html

xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head><title>XHTML Example</title></head>
<body>

<p>XHTML is great. </p> <hr/>
<p>A

WebE-Link.</p>
</body>

</html>

Differences To HTML (1/4)Differences To HTML (1/4)
• Documents must be well-formed

• Incorrect: Overlapping Elements <a>
• Correct: <a> or <a>

• Element and attribute names must be in lower
case

• For non-empty elements, end tags are required
• Incorrect: <p>A new paragraph<p>starts here
• Correct: <p>A new paragraph</p><p>starts here</p>

• Attribute values must always be quoted

• Documents must be well-formed
• Incorrect: Overlapping Elements <a>
• Correct: <a> or <a>

• Element and attribute names must be in lower
case

• For non-empty elements, end tags are required
• Incorrect: <p>A new paragraph<p>starts here
• Correct: <p>A new paragraph</p><p>starts here</p>

• Attribute values must always be quoted

Differences To HTML (2/4)Differences To HTML (2/4)
• Attribute minimization

• Attribute names like compact or checked must be
written in full

• Incorrect: <dl compact>
• Correct: <dl compact="compact">

• Using ampersands in attribute values
• ‘&’ must be expressed as a character entity reference
• Incorrect: http://server/cgi/script?a=guest&name=bebo
• Correct:

http://server/cgi/script?a=guest&name=bebo

• Attribute minimization
• Attribute names like compact or checked must be

written in full
• Incorrect: <dl compact>
• Correct: <dl compact="compact">

• Using ampersands in attribute values
• ‘&’ must be expressed as a character entity reference
• Incorrect: http://server/cgi/script?a=guest&name=bebo
• Correct:

http://server/cgi/script?a=guest&name=bebo

Differences To HTML (3/4)Differences To HTML (3/4)
• Empty Elements

• Must be XML conform:

 <hr> <hr/>

• Whitespace handling in attribute values
• User Agents will strip leading and trailing Whitespace from

Attribute Values

• Script and Style elements
• <script> <![CDATA[... unescaped script content ...]]> </script>

• SGML exclusions
• SGML gives the Writer of a DTD the Ability to exclude specific

Elements from being contained within an Element. Such
Prohibitions (called "exclusions") are not possible in XML.

• For example, the HTML 4 Strict DTD forbids the nesting of an 'a'
element within another 'a' element to any descendant depth

• Empty Elements
• Must be XML conform:

 <hr> <hr/>

• Whitespace handling in attribute values
• User Agents will strip leading and trailing Whitespace from

Attribute Values

• Script and Style elements
• <script> <![CDATA[... unescaped script content ...]]> </script>

• SGML exclusions
• SGML gives the Writer of a DTD the Ability to exclude specific

Elements from being contained within an Element. Such
Prohibitions (called "exclusions") are not possible in XML.

• For example, the HTML 4 Strict DTD forbids the nesting of an 'a'
element within another 'a' element to any descendant depth

Differences To HTML (4/4)Differences To HTML (4/4)
• The Elements with 'id' and 'name' Attributes

• HTML 4 defined the name attribute for the elements a,
applet, form, frame, iframe, img, and map. HTML 4
also introduced the id attribute.

• name and id are attributes designed to be used as
fragment identifiers (are of type ID therefore unique).

• XHTML 1.0 Documents MUST use the id Attribute
when defining fragment identifiers, even on elements
that had a name attribute

• Check compatibility – if necessary provide both:
id=“foo” name=“foo”

• The Elements with 'id' and 'name' Attributes
• HTML 4 defined the name attribute for the elements a,

applet, form, frame, iframe, img, and map. HTML 4
also introduced the id attribute.

• name and id are attributes designed to be used as
fragment identifiers (are of type ID therefore unique).

• XHTML 1.0 Documents MUST use the id Attribute
when defining fragment identifiers, even on elements
that had a name attribute

• Check compatibility – if necessary provide both:
id=“foo” name=“foo”

Validate XHTMLValidate XHTML
XHTML validation @ W3C

http://validator.w3.org/
Type in a URL or upload a file to it and their parser will
validate your document, looking for errors in your XHTML

XHTML validation @ W3C

http://validator.w3.org/
Type in a URL or upload a file to it and their parser will
validate your document, looking for errors in your XHTML

Part 3: XML and Supplementary
Technologies
Part 3: XML and Supplementary
Technologies
• The W3C Document Object Model (DOM)

• an API that allows developers to programmatically
manage and access XML nodes

• allows programmers to update and change XML
documents within an application

• reads the whole XML file and then stores a
hierarchical tree structure containing all elements
within the document

• This tree has a single root node, which is the root
element, and may contain many children, each of
which represents an XML element

• The W3C Document Object Model (DOM)
• an API that allows developers to programmatically

manage and access XML nodes
• allows programmers to update and change XML

documents within an application
• reads the whole XML file and then stores a

hierarchical tree structure containing all elements
within the document

• This tree has a single root node, which is the root
element, and may contain many children, each of
which represents an XML element

What is the XML DOM? (1/3)What is the XML DOM? (1/3)
• XML Document Object Model is a standard way to

manipulate (read, modify and make sense of) XML
documents

• Formally, the XML DOM is a programming interface (i.e.
an API) that can be used in programs for creating an
XML document, and/or manipulating an existing XML
document (navigating its structure, and adding,
modifying, or deleting its elements)

XML DOM is defined by the W3C
(http://www.w3.org/DOM/) to be used with any
programming language and any operating system

• XML Document Object Model is a standard way to
manipulate (read, modify and make sense of) XML
documents

• Formally, the XML DOM is a programming interface (i.e.
an API) that can be used in programs for creating an
XML document, and/or manipulating an existing XML
document (navigating its structure, and adding,
modifying, or deleting its elements)

XML DOM is defined by the W3C
(http://www.w3.org/DOM/) to be used with any
programming language and any operating system

What is the XML DOM? (2/3)What is the XML DOM? (2/3)

.xml

Script or
Program

XML Parser

Converts XML
documents into a
set of objects in
memory. These
objects can be
accessed and
modified using the
DOM interfaces

Set of objects, DOM
tree, that contain
information from the
XML document

XML Parser and DOM

<?xml version="1.0" encoding="UTF-8"?>

<PictureSet>

<title>Pictures from My Holiday</title>

<picture>

<source location="town.jpg" width="750" height="509"/>

<description>Seaside town</description>

</picture>

<picture>

<source location="port.jpg" width="878" height="544"/>

<thumbnail location="port_t.jpg"/>

<description>Sea port</description>

</picture>

</PictureSet>

Sample XML DocumentSample XML Document

The Corresponding DOM TreeThe Corresponding DOM Tree

Text Node

Element Node

PictureSet

Element Node

title

Element Node

picture

Element Node

picture

Element Node

source

Element Node

source

Element Node

description

Element Node

thumbnail
Attribute Node

location: town.jpg

Attribute Node

location: port_t.jpg

Attribute Node

location: port.jpg

Attribute Node

width : 750

Attribute Node

height : 544

Attribute Node

height : 509

Attribute Node

width : 878

Text Node

Text Node

Element Node

description

Document

XML DOM Interfaces/ClassesXML DOM Interfaces/Classes
• Document – the root in the DOM tree; provides access to all tree nodes.
• Node – represents a node in the DOM tree
• Nodelist – read-only list of Node objects.
• Element – represents an element node; derives from Node.
• Attr – represents an attribute node; derives from Node.
• CharacterData – represents character data; derives from Node.
• Text – represents a text node; derives from CharacterData.
• Comment – represents a comment node; derives from Character Data.
• Processing Instruction – represents a processing instruction, i.e. <?…

?>; derives from Node.
• CDATASection – represents a CDATA section; derives from Text.

• Document – the root in the DOM tree; provides access to all tree nodes.
• Node – represents a node in the DOM tree
• Nodelist – read-only list of Node objects.
• Element – represents an element node; derives from Node.
• Attr – represents an attribute node; derives from Node.
• CharacterData – represents character data; derives from Node.
• Text – represents a text node; derives from CharacterData.
• Comment – represents a comment node; derives from Character Data.
• Processing Instruction – represents a processing instruction, i.e. <?…

?>; derives from Node.
• CDATASection – represents a CDATA section; derives from Text.

Parsing the DOM Parsing the DOM
• To read and update - create and manipulate - an

XML document, you need an XML parser.
• The Microsoft XMLDOM parser features a

programming model that:
• Supports JavaScript, VBScript, Perl, VB, Java, C++

and more
• An ActiveX object that comes with Microsoft Internet

Explorer 5.0
• Supports W3C XML 1.0 and XML DOM
• Supports DTD and validation

• To read and update - create and manipulate - an
XML document, you need an XML parser.

• The Microsoft XMLDOM parser features a
programming model that:
• Supports JavaScript, VBScript, Perl, VB, Java, C++

and more
• An ActiveX object that comes with Microsoft Internet

Explorer 5.0
• Supports W3C XML 1.0 and XML DOM
• Supports DTD and validation

Creating XML DOM Tree with
JavaScript
Creating XML DOM Tree with
JavaScript

Data AccessData Access
• Parsing vs. Access

• Once an XML document is parsed, there are
multiple ways to access the data.

• Random vs. sequential access
• Document Object Model (random)
• Simple API for XML (sequential)

• Xpath for node selection

• Parsing vs. Access
• Once an XML document is parsed, there are

multiple ways to access the data.
• Random vs. sequential access

• Document Object Model (random)
• Simple API for XML (sequential)

• Xpath for node selection

SAX and DOMSAX and DOM
• SAX and DOM are standards for XML parsers -

program APIs to read and interpret XML files
• DOM is a W3C standard
• SAX is an ad-hoc (but very popular) standard

• There are various implementations available
• Java implementations are provided in JAXP

(Java API for XML Processing)
• JAXP is included as a package in Java 1.4

• JAXP is available separately for Java 1.3
• Unlike many XML technologies, SAX and DOM

are relatively easy

• SAX and DOM are standards for XML parsers -
program APIs to read and interpret XML files
• DOM is a W3C standard
• SAX is an ad-hoc (but very popular) standard

• There are various implementations available
• Java implementations are provided in JAXP

(Java API for XML Processing)
• JAXP is included as a package in Java 1.4

• JAXP is available separately for Java 1.3
• Unlike many XML technologies, SAX and DOM

are relatively easy

Difference between SAX and
DOM (1/2)
Difference between SAX and
DOM (1/2)
• DOM reads the entire XML document into

memory and stores it as a tree data structure
• SAX reads the XML document and sends an

event for each element that it encounters

• DOM reads the entire XML document into
memory and stores it as a tree data structure

• SAX reads the XML document and sends an
event for each element that it encounters

Difference between SAX and
DOM (2/2)
Difference between SAX and
DOM (2/2)
• Consequences:

• DOM provides “random access” into the XML document
• SAX provides only sequential access to the XML document
• DOM is slow and requires huge amounts of memory, so it cannot

be used for large XML documents
• SAX is fast and requires very little memory, so it can be used for

huge documents (or large numbers of documents)
• This makes SAX much more popular for Web sites

• Some DOM implementations have methods for changing the XML
document in memory; SAX implementations do not

• Consequences:
• DOM provides “random access” into the XML document
• SAX provides only sequential access to the XML document
• DOM is slow and requires huge amounts of memory, so it cannot

be used for large XML documents
• SAX is fast and requires very little memory, so it can be used for

huge documents (or large numbers of documents)
• This makes SAX much more popular for Web sites

• Some DOM implementations have methods for changing the XML
document in memory; SAX implementations do not

SAX CallbacksSAX Callbacks
• SAX works through callbacks: you call the

parser, it calls methods that you supply
• SAX works through callbacks: you call the

parser, it calls methods that you supply

Your program

main(...)

startDocument(...)

startElement(...)

characters(...)

endElement()

endDocument()

parse(...)

The SAX parser

.dtd
.xml

.xsd

DTD Schema

or .xml
.xml

.xml

Software
System

DOM SAX

.xsl

.fo

Stylesheet

XML DOM in the Context of a Web
Project
XML DOM in the Context of a Web
Project

W3C DOM with JavaScript (1/3)W3C DOM with JavaScript (1/3)
• Example 1: Loading the XML document: DOMDocument

• The programmer can use a Microsoft Active X object
to parse an XML file

//Instantiate DOMDocument object
var XMLfile = new ActiveXObject("Msxml2.DOMDocument");
XMLfile.load("newspaper.xml");
var rootElement = XMLfile.documentElement;
document.write("The root node of the XML file is: ");
document.writeln("" + rootElement.nodeName +"");

• Example 1: Loading the XML document: DOMDocument
• The programmer can use a Microsoft Active X object

to parse an XML file

//Instantiate DOMDocument object
var XMLfile = new ActiveXObject("Msxml2.DOMDocument");
XMLfile.load("newspaper.xml");
var rootElement = XMLfile.documentElement;
document.write("The root node of the XML file is: ");
document.writeln("" + rootElement.nodeName +"");

W3C DOM with JavaScript (2/3)W3C DOM with JavaScript (2/3)
• Example 2: Accessing the Children Elements

• The childNodes member of any element node
gives the programmer access to all of the
sibling nodes of that element

//traverse through each child of the root element
//and print out its name
for (i=0; i<rootElement.childNodes.length; i++) {

var node = rootElement.childNodes.item(i);
document.write("The name of the node is ");
document.write("" + node.nodeName + "");

}

• Example 2: Accessing the Children Elements
• The childNodes member of any element node

gives the programmer access to all of the
sibling nodes of that element

//traverse through each child of the root element
//and print out its name
for (i=0; i<rootElement.childNodes.length; i++) {

var node = rootElement.childNodes.item(i);
document.write("The name of the node is ");
document.write("" + node.nodeName + "");

}

W3C DOM with JavaScript (3/3)W3C DOM with JavaScript (3/3)

Example 3: Getting Element Attributes

//traverse through each child of the root element
//and print out its name

for (i=0; i<rootElement.childNodes.length; i++) {
//get the current element
var elementNode = rootElement.childNodes.item(i);
document.writeln("Processing Node: " +

elementNode.nodeName + "
");

var attributeValue;
//get an attribute value by specific name
attributeValue = elementNode.getAttribute("articleID");
//print it out
document.writeln("Attribute value: " + attributeValue +

"
");
}

Example 3: Getting Element Attributes

//traverse through each child of the root element
//and print out its name

for (i=0; i<rootElement.childNodes.length; i++) {
//get the current element
var elementNode = rootElement.childNodes.item(i);
document.writeln("Processing Node: " +

elementNode.nodeName + "
");

var attributeValue;
//get an attribute value by specific name
attributeValue = elementNode.getAttribute("articleID");
//print it out
document.writeln("Attribute value: " + attributeValue +

"
");
}

Cautions with DOMCautions with DOM
• Make sure that the XML file resides in the same

directory as the html file with the JavaScript code

• The Attribute node does not appear as the child node of
any other node type; it is not considered a child node of
an element

• Use caution when outputting raw XML to Internet
Explorer.If the programmer uses the document.writeln
method, IE attempts to interpret the XML tags and
jumbles the text. Instead, use an alert box when
debugging.

• Make sure that the XML file resides in the same
directory as the html file with the JavaScript code

• The Attribute node does not appear as the child node of
any other node type; it is not considered a child node of
an element

• Use caution when outputting raw XML to Internet
Explorer.If the programmer uses the document.writeln
method, IE attempts to interpret the XML tags and
jumbles the text. Instead, use an alert box when
debugging.

W3C DOM with Cascading
Style Sheets (CSS)
W3C DOM with Cascading
Style Sheets (CSS)

Cascading Style Sheets (CSS)Cascading Style Sheets (CSS)
• Style sheets describe how a document is

displayed or printed
• Sets properties or rules for an XML element or

set of elements
• Similar to setting attributes in HTML

•

• Style sheets describe how a document is
displayed or printed

• Sets properties or rules for an XML element or
set of elements

• Similar to setting attributes in HTML
•

6 Popular CSS Properties6 Popular CSS Properties
Foreground colors; background colors and images

•Fonts
Font-size property – absolute size (48pt), a relative percentage
(200%) or a relative size (xx-small, x-small, small, medium, large, or
x-large)
Font-family property = typeface. Set to explicit value (Times or
Helvetica) or general value (sans-serif)

•Text
Word-spacing – control spacing between words
Letter-spacing – control spacing between letters
Text-decoration – render text underlined, overlined, with a line
through it, or even blinking

Foreground colors; background colors and images

•Fonts
Font-size property – absolute size (48pt), a relative percentage
(200%) or a relative size (xx-small, x-small, small, medium, large, or
x-large)
Font-family property = typeface. Set to explicit value (Times or
Helvetica) or general value (sans-serif)

•Text
Word-spacing – control spacing between words
Letter-spacing – control spacing between letters
Text-decoration – render text underlined, overlined, with a line
through it, or even blinking

CSS PropertiesCSS Properties
•Boxes

•Control borders, padding, and margins around HTML
elements

•Positioning
•Fine-grained control of the layout of a Web page
•X, Y, and Z coordinates can be set absolutely or relative to
their default position

•Classification
•How to display: inline, separate block (blockquote or table),
list item, or not at all

•Whitespace and line break display
•List element display

•Boxes
•Control borders, padding, and margins around HTML
elements

•Positioning
•Fine-grained control of the layout of a Web page
•X, Y, and Z coordinates can be set absolutely or relative to
their default position

•Classification
•How to display: inline, separate block (blockquote or table),
list item, or not at all

•Whitespace and line break display
•List element display

CSS SyntaxCSS Syntax
Selector {property: value}

Selector: element/tag you wish to define
Property: attribute you wish to change
Value: value for the property

Example:
body {color: black; background: white}
This style means that all body text will be
black with a white body background color

Selector {property: value}
Selector: element/tag you wish to define
Property: attribute you wish to change
Value: value for the property

Example:
body {color: black; background: white}
This style means that all body text will be
black with a white body background color

CSS Style SheetsCSS Style Sheets

Three ways to insert a style sheet:

1. External style sheet (a separate file)

2. Internal style sheet (inside the <head> tag)

3. Inline style (inside an HTML element)

Three ways to insert a style sheet:

1. External style sheet (a separate file)

2. Internal style sheet (inside the <head> tag)

3. Inline style (inside an HTML element)

External Style SheetExternal Style Sheet
Within any Web page, reference a separate CSS

file using the <link> tag

Example:
<link rel="stylesheet" href="style.css" type="text/css"

/>
rel="stylesheet" indicates that the link is to a style sheet.
href refers to the file name of the style sheet you want to use.
type specifies the style sheet language (always “text/css” for
css)

Benefit: centrally located style rule – one file to
update/change

Within any Web page, reference a separate CSS
file using the <link> tag

Example:
<link rel="stylesheet" href="style.css" type="text/css"

/>
rel="stylesheet" indicates that the link is to a style sheet.
href refers to the file name of the style sheet you want to use.
type specifies the style sheet language (always “text/css” for
css)

Benefit: centrally located style rule – one file to
update/change

CSS Applied to XHTML ExampleCSS Applied to XHTML Example
<div align="center">
<img src="../bighistory.jpg" border="0" alt = “SLAC Web

Wizards" width="400" height="150" />
</div>
<hr />
1991
<p>Paul Kunz installs a WWW line-mode browser on SCS VM/CMS

system. </p>

1991
<p>Web/SPIRES interface is created.</p>

<div align="center">
<img src="../bighistory.jpg" border="0" alt = “SLAC Web

Wizards" width="400" height="150" />
</div>
<hr />
1991
<p>Paul Kunz installs a WWW line-mode browser on SCS VM/CMS

system. </p>

1991
<p>Web/SPIRES interface is created.</p>

XHTML for CSSXHTML for CSS
<div id="header">
<img src="../bighistory.jpg" border="0" alt

= “SLAC Web Wizards" width="400" height="150"
/>

</div>
<h2 class="year">1991</h2>
<p>Paul Kunz installs a WWW line-mode browser on SCS

VM/CMS system. </p>
<h2 class="year">1991</h2>
<p>Web/SPIRES interface is created.</p>

<div id="header">
<img src="../bighistory.jpg" border="0" alt

= “SLAC Web Wizards" width="400" height="150"
/>

</div>
<h2 class="year">1991</h2>
<p>Paul Kunz installs a WWW line-mode browser on SCS

VM/CMS system. </p>
<h2 class="year">1991</h2>
<p>Web/SPIRES interface is created.</p>

Style SheetStyle Sheet
p {

margin-bottom: 20px;
}

h2.year {
font-weight: bold;
color: #990000;
font-size: 150%;

}

#header {
text-align: center;
border-bottom-style: ridge;
padding-bottom: 10px;

}

p {
margin-bottom: 20px;

}

h2.year {
font-weight: bold;
color: #990000;
font-size: 150%;

}

#header {
text-align: center;
border-bottom-style: ridge;
padding-bottom: 10px;

}

RELAX NG

What is RELAX NG? (1/2)What is RELAX NG? (1/2)
• RELAX NG is a schema language for

XML
• It is an alternative to DTDs and XML

Schemas
• It is based on earlier schema languages,

RELAX and TREX
• It is not a W3C standard, but is an OASIS

standard

• RELAX NG is a schema language for
XML
• It is an alternative to DTDs and XML

Schemas
• It is based on earlier schema languages,

RELAX and TREX
• It is not a W3C standard, but is an OASIS

standard

What is RELAX NG? (2/2)What is RELAX NG? (2/2)
• OASIS is the Organization for the

Advancement of Structured Information
Standards
• ebXML (Enterprise Business XML) is a joint effort

of OASIS and UN/CEFACT (United Nations
Centre for Trade Facilitation and Electronic
Business)

• OASIS developed the highly popular DocBook
DTD for describing books, articles, and technical
documents

• RELAX NG has recently been adopted as an
ISO/IEC standard

• OASIS is the Organization for the
Advancement of Structured Information
Standards
• ebXML (Enterprise Business XML) is a joint effort

of OASIS and UN/CEFACT (United Nations
Centre for Trade Facilitation and Electronic
Business)

• OASIS developed the highly popular DocBook
DTD for describing books, articles, and technical
documents

• RELAX NG has recently been adopted as an
ISO/IEC standard

Design Goals Design Goals
• Simple and easy to learn
• Uses XML syntax

• But there is also a “concise” (non-XML) syntax
• Supports XML namespaces
• Treats attributes uniformly with elements so far

as possible
• Has unrestricted support for unordered content
• Has unrestricted support for mixed content
• Has a solid theoretical basis
• Can make use of a separate datatyping

language (such W3C XML Schema Datatypes)

• Simple and easy to learn
• Uses XML syntax

• But there is also a “concise” (non-XML) syntax
• Supports XML namespaces
• Treats attributes uniformly with elements so far

as possible
• Has unrestricted support for unordered content
• Has unrestricted support for mixed content
• Has a solid theoretical basis
• Can make use of a separate datatyping

language (such W3C XML Schema Datatypes)

BasicsBasics
• XML is a tree
• RELAX NG validates at the level of the

basic tree abstraction
• RELAX NG is all about patterns

• XML is a tree
• RELAX NG validates at the level of the

basic tree abstraction
• RELAX NG is all about patterns

SyntaxSyntax
• Has an XML syntax and an equivalent

non-XML compact syntax
• The compact syntax is good for humans
• The XML syntax is good for machines
• Translation is simple using available tools

• Has an XML syntax and an equivalent
non-XML compact syntax

• The compact syntax is good for humans
• The XML syntax is good for machines
• Translation is simple using available tools

Basic PatternsBasic Patterns
• Text

• text
• Element

• element name { text }
• Attributes

• attribute name { text }

• Text
• text

• Element
• element name { text }

• Attributes
• attribute name { text }

CardinalityCardinality
• “?” – Zero or one

• element name { text }?
• “+” – One or more

• element name { text }+
• “*” – Zero or more

• element name { text }*

• “?” – Zero or one
• element name { text }?

• “+” – One or more
• element name { text }+

• “*” – Zero or more
• element name { text }*

CompositionComposition
• “,” – Group

• Patterns must occur in given order.
• element foo { text } , element bar { text }

• “&” – Interleave
• Patterns can occur in any order.
• element foo { text } & element bar { text }

• “|” – Choice
• Exactly one of the patterns can occur.
• element foo { text } | element bar { text }

• “,” – Group
• Patterns must occur in given order.
• element foo { text } , element bar { text }

• “&” – Interleave
• Patterns can occur in any order.
• element foo { text } & element bar { text }

• “|” – Choice
• Exactly one of the patterns can occur.
• element foo { text } | element bar { text }

Named PatternsNamed Patterns
• Enable modularization
• Allow a “flattened” schema design
• Pattern recursion is OK

patternName = element elementName { text }

• Enable modularization
• Allow a “flattened” schema design
• Pattern recursion is OK

patternName = element elementName { text }

Constraining Text ValuesConstraining Text Values
• Constants

• attribute version { “1.2” }
• Enumerations

• attribute version { “1.2” | “1.3” | “1.4” }
• Exclusion

• attribute version { token - “1.0” }
• List

• attribute versions { list { token* } }

• Constants
• attribute version { “1.2” }

• Enumerations
• attribute version { “1.2” | “1.3” | “1.4” }

• Exclusion
• attribute version { token - “1.0” }

• List
• attribute versions { list { token* } }

Basic Structure (1/2)Basic Structure (1/2)
• A RELAX NG specification is written in

XML, so it obeys all XML rules
• The RELAX NG specification has one root

element
• The document it describes also has one

root element
• The root element of the specification is

element

• A RELAX NG specification is written in
XML, so it obeys all XML rules
• The RELAX NG specification has one root

element
• The document it describes also has one

root element
• The root element of the specification is

element

Basic Structure (2/2)Basic Structure (2/2)
• If the root element of your document is

book, then the RELAX NG specifications
begins:
• <element name="book"

xmlns="http://relaxng.org/ns/structure
/1.0">

• and ends:
• </element>

• If the root element of your document is
book, then the RELAX NG specifications
begins:
• <element name="book"

xmlns="http://relaxng.org/ns/structure
/1.0">

• and ends:
• </element>

Data Elements (1/2)Data Elements (1/2)
• RELAX NG makes a clear separation between:

• the structure of a document (which it describes)
• the datatypes used in the document (which it gets from

somewhere else, such as from XML Schemas)
• For starters, we will use the two (XML-defined)

elements:
• <text> ... </text> (usually written <text/>)

• Plain character data, not containing other elements
• <empty></empty> (usually written <empty/>)

• Does not contain anything

• RELAX NG makes a clear separation between:
• the structure of a document (which it describes)
• the datatypes used in the document (which it gets from

somewhere else, such as from XML Schemas)
• For starters, we will use the two (XML-defined)

elements:
• <text> ... </text> (usually written <text/>)

• Plain character data, not containing other elements
• <empty></empty> (usually written <empty/>)

• Does not contain anything

Data Elements (1/2)Data Elements (1/2)
• Other datatypes, such as <double>...</double>

are not defined in RELAX NG
• To inherit datatypes from XML Schemas, use:

datatypeLibrary="http://www.w3.org/2001/XMLSchem
a-datatypes"
as an attribute of the root element

• Other datatypes, such as <double>...</double>
are not defined in RELAX NG
• To inherit datatypes from XML Schemas, use:

datatypeLibrary="http://www.w3.org/2001/XMLSchem
a-datatypes"
as an attribute of the root element

Defining TagsDefining Tags
• To define a tag (and specify its content), use

<element name="myElement">
<!-- Content goes here -->

</element>
• Example: The DTD

<!ELEMENT name (firstName, lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

• Translates to:
<element name="name">

<element name="firstName"> <text/>
</element> <element name="lastName">
<text/> </element>

</element>
• Note: As in the DTD, the components must occur in

order

• To define a tag (and specify its content), use
<element name="myElement">

<!-- Content goes here -->
</element>

• Example: The DTD
<!ELEMENT name (firstName, lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

• Translates to:
<element name="name">

<element name="firstName"> <text/>
</element> <element name="lastName">
<text/> </element>

</element>
• Note: As in the DTD, the components must occur in

order

RELAX NG Describes PatternsRELAX NG Describes Patterns
• Your RELAX NG document specifies a pattern

that matches your valid XML documents
• For example, the pattern:

<element name="name">
<element name="firstName"> <text/>

</element>
<element name="lastName"> <text/> </element>

</element>

• Will match the XML:
<name>

<firstName>Bebo</firstName>
<lastName>White</lastName>

</name>

• Your RELAX NG document specifies a pattern
that matches your valid XML documents

• For example, the pattern:
<element name="name">

<element name="firstName"> <text/>
</element>

<element name="lastName"> <text/> </element>
</element>

• Will match the XML:
<name>

<firstName>Bebo</firstName>
<lastName>White</lastName>

</name>

Easy TagsEasy Tags
<zeroOrMore> ... </zeroOrMore>

The enclosed content occurs zero or more times
<oneOrMore> ... </oneOrMore>

The enclosed content occurs one or more times
<optional> ... </optional>

The enclosed content occurs once or not at all
<choice> ... </choice>

Any one of the enclosed elements may occur
<!-- An XML comment - not a container, and

may not contain two consecutive hyphens
-->

<zeroOrMore> ... </zeroOrMore>
The enclosed content occurs zero or more times

<oneOrMore> ... </oneOrMore>
The enclosed content occurs one or more times

<optional> ... </optional>
The enclosed content occurs once or not at all

<choice> ... </choice>
Any one of the enclosed elements may occur

<!-- An XML comment - not a container, and
may not contain two consecutive hyphens
-->

ExampleExample
 <element name="addressList">

<zeroOrMore>
<element name="name">

<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
<element name="address">

<choice>
<element name="email> <text/> </element>
<element name="USPost"> <text/> </element>

</choice>
</element>

</zeroOrMore>
</element>

 <element name="addressList">
<zeroOrMore>

<element name="name">
<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
<element name="address">

<choice>
<element name="email> <text/> </element>
<element name="USPost"> <text/> </element>

</choice>
</element>

</zeroOrMore>
</element>

EnumerationsEnumerations
• The <value>...</value> pattern matches a

specified value
• Example:

<element name="gender">
<choice>

<value>male</value>
<value>female</value>

</choice>
</element>

• The contents of <value> are subject to
whitespace normalization:
• Leading and trailing whitespace is removed
• Internal sequences of whitespace characters are

collapsed to a single blank

• The <value>...</value> pattern matches a
specified value
• Example:

<element name="gender">
<choice>

<value>male</value>
<value>female</value>

</choice>
</element>

• The contents of <value> are subject to
whitespace normalization:
• Leading and trailing whitespace is removed
• Internal sequences of whitespace characters are

collapsed to a single blank

More About Data (1/2)More About Data (1/2)
• Remember: To inherit datatypes from XML

Schemas, add this attribute to the root
element:
datatypeLibrary =

"http://www.w3.org/2001/XMLSchema-datatypes"
• You can access the inherited types with the

<data> tag, for instance, <data type="double>
• The <data> pattern must match the entire content

of the enclosing tag, not just part of it
• <element name="illegalUse"> <!-- Don't do this! -->

<data type="double"/>
<element name="moreStuff"> <text/> </element>

</element>

• Remember: To inherit datatypes from XML
Schemas, add this attribute to the root
element:
datatypeLibrary =

"http://www.w3.org/2001/XMLSchema-datatypes"
• You can access the inherited types with the

<data> tag, for instance, <data type="double>
• The <data> pattern must match the entire content

of the enclosing tag, not just part of it
• <element name="illegalUse"> <!-- Don't do this! -->

<data type="double"/>
<element name="moreStuff"> <text/> </element>

</element>

More About Data (2/2)More About Data (2/2)
• If you don't specify a datatype library, RELAX

NG defines the following for you (along with
<text/> and <empty/>):
• <string/> : No whitespace normalization is done
• <token/> : A sequence of characters containing no

whitespace

• If you don't specify a datatype library, RELAX
NG defines the following for you (along with
<text/> and <empty/>):
• <string/> : No whitespace normalization is done
• <token/> : A sequence of characters containing no

whitespace

<group><group>
• <group>...</group> is used as “fat

parentheses”
• Example:

<choice>
<element name="name"> <text/> <element>
<group>

<element name="firstName">
<text/>

</element>
<element name="lastName">

<text/>
</element>

</group>
</choice>

• <group>...</group> is used as “fat
parentheses”

• Example:
<choice>

<element name="name"> <text/> <element>
<group>

<element name="firstName">
<text/>

</element>
<element name="lastName">

<text/>
</element>

</group>
</choice>

AttributesAttributes
• Attributes are defined practically the same way

as elements:
• <attribute name="attributeName">...</attribute>

• Example:
• <element name="name">

<attribute name="title"> <text/> </attribute>
<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
• Matches:

• <name title=“Prof.">
<firstName>Bebo</firstName>
<lastName>White</lastName>

</name>

• Attributes are defined practically the same way
as elements:
• <attribute name="attributeName">...</attribute>

• Example:
• <element name="name">

<attribute name="title"> <text/> </attribute>
<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
• Matches:

• <name title=“Prof.">
<firstName>Bebo</firstName>
<lastName>White</lastName>

</name>

More About AttributesMore About Attributes
• With attributes, as with elements, you

can use <optional>, <choice>, and
<group>

• It doesn’t make sense to use
<oneOrMore> or <zeroOrMore> with
attributes

• In keeping with the usual XML rules,
• The order in which you list elements is

significant
• The order in which you list attributes is not

significant

• With attributes, as with elements, you
can use <optional>, <choice>, and
<group>

• It doesn’t make sense to use
<oneOrMore> or <zeroOrMore> with
attributes

• In keeping with the usual XML rules,
• The order in which you list elements is

significant
• The order in which you list attributes is not

significant

Still More About AttributesStill More About Attributes
• <attribute name="attributeName"> <text/>

</attribute>
can be (and usually is) abbreviated as

<attribute name="attributeName"/>

• However,
<element name="elementName"> <text/>
</element>

can not be abbreviated as
<element name="elementName"/>
• If an element has no attributes and no

content, you must use <empty/> explicitly

• <attribute name="attributeName"> <text/>
</attribute>

can be (and usually is) abbreviated as
<attribute name="attributeName"/>

• However,
<element name="elementName"> <text/>
</element>

can not be abbreviated as
<element name="elementName"/>
• If an element has no attributes and no

content, you must use <empty/> explicitly

<list><list>
• <list> pattern </list> matches a

whitespace-separated list of tokens, and
applies the pattern to those tokens
• Example:

<!-- A floating-point number and some
integers -->
<element name="vector">

<list>
<data type="float"/>
<oneOrMore>

<data type="int"/>
</oneOrMore>

</list>
</element>

• <list> pattern </list> matches a
whitespace-separated list of tokens, and
applies the pattern to those tokens
• Example:

<!-- A floating-point number and some
integers -->
<element name="vector">

<list>
<data type="float"/>
<oneOrMore>

<data type="int"/>
</oneOrMore>

</list>
</element>

<interleave><interleave>
• <interleave> ... </interleave> allows the

contained elements to occur in any order
• <interleave> is more sophisticated than

you might expect
• If a contained element can occur more than

once, the various instances do not need to
occur together

• <interleave> ... </interleave> allows the
contained elements to occur in any order

• <interleave> is more sophisticated than
you might expect
• If a contained element can occur more than

once, the various instances do not need to
occur together

Interleave ExampleInterleave Example
 <element name="contactInformation">

<interleave>
<zeroOrMore>

<element name="phone"> <text/> </element>
</zeroOrMore>
<oneOrMore>

<element name="email"> <text/> </element>
</oneOrMore>

</interleave>
</element>

 <contactInformation>
<email>bebo@slac.stanford.edu</email>
<phone>650-926-2907</phone>
<email>bebo.white@gmail.com</email>

</contactInformation>

 <element name="contactInformation">
<interleave>

<zeroOrMore>
<element name="phone"> <text/> </element>

</zeroOrMore>
<oneOrMore>

<element name="email"> <text/> </element>
</oneOrMore>

</interleave>
</element>

 <contactInformation>
<email>bebo@slac.stanford.edu</email>
<phone>650-926-2907</phone>
<email>bebo.white@gmail.com</email>

</contactInformation>

<mixed><mixed>
• <mixed> allows mixed content, that is,

both text and patterns
• If pattern is a RELAX NG pattern, then

<mixed> pattern </mixed>
is shorthand for

<interleave> <text/> pattern </interleave>

• <mixed> allows mixed content, that is,
both text and patterns

• If pattern is a RELAX NG pattern, then
<mixed> pattern </mixed>

is shorthand for
<interleave> <text/> pattern </interleave>

Example of <mixed>Example of <mixed>

• Pattern:
<element name="words">

<mixed>
<zeroOrMore>

<choice>
<element name="bold"> <text/> </element>
<element name="italic"> <text/> </element>

</choice>
</zeroOrMore>

</mixed>
</element>

• Matches:
<words>This is <italic>not</italic> a <bold>great</bold>

example, <italic>but</italic> it should suffice.</words>

• Pattern:
<element name="words">

<mixed>
<zeroOrMore>

<choice>
<element name="bold"> <text/> </element>
<element name="italic"> <text/> </element>

</choice>
</zeroOrMore>

</mixed>
</element>

• Matches:
<words>This is <italic>not</italic> a <bold>great</bold>

example, <italic>but</italic> it should suffice.</words>

Without this we get one
bold or one italic

The Need for Named PatternsThe Need for Named Patterns
• So far, we have defined elements exactly at the

point that they can be used
• There is no equivalent of:

• <!ELEMENT person (name)>
<!ELEMENT name (firstName, lastName)>
...use person several places in the DTD...

• With the RELAX NG we have discussed so far,
each time we want to include a person, we would
need to explicitly define both person and name at
that point:
• <element name="person">

<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
• The <grammar> element solves this problem

• So far, we have defined elements exactly at the
point that they can be used
• There is no equivalent of:

• <!ELEMENT person (name)>
<!ELEMENT name (firstName, lastName)>
...use person several places in the DTD...

• With the RELAX NG we have discussed so far,
each time we want to include a person, we would
need to explicitly define both person and name at
that point:
• <element name="person">

<element name="firstName"> <text/> </element>
<element name="lastName"> <text/> </element>

</element>
• The <grammar> element solves this problem

Syntax of <grammar>Syntax of <grammar>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>
...usual RELAX NG elements, which may include:
<ref name="DefinedName"/>

</start>

<!-- One or more of the following: -->
<define name="DefinedName">

...usual RELAX NG elements, attributes, groups,
etc.

</define>
</grammar>

<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>

...usual RELAX NG elements, which may include:
<ref name="DefinedName"/>

</start>

<!-- One or more of the following: -->
<define name="DefinedName">

...usual RELAX NG elements, attributes, groups,
etc.

</define>
</grammar>

Use of <grammar>Use of <grammar>
• To write a <grammar>,

• Make <grammar> the root element of your
specification
• Hence it should say

xmlns="http://relaxng.org/ns/structure/1.0"

• Use, as the <start> element, a pattern that
matches the entire (valid) XML document

• In each <define> element, write a pattern that you
want to use other places in the specification

• Wherever you want to use a defined element, put
<ref name="NameOfDefinedElement">

• Note that defined elements may be used in
definitions, not just in the <start> element
• Definitions may even be recursive, but
• Recursive references must be in an element,

not an attribute

• To write a <grammar>,
• Make <grammar> the root element of your

specification
• Hence it should say

xmlns="http://relaxng.org/ns/structure/1.0"

• Use, as the <start> element, a pattern that
matches the entire (valid) XML document

• In each <define> element, write a pattern that you
want to use other places in the specification

• Wherever you want to use a defined element, put
<ref name="NameOfDefinedElement">

• Note that defined elements may be used in
definitions, not just in the <start> element
• Definitions may even be recursive, but
• Recursive references must be in an element,

not an attribute

Long Example of <grammar>Long Example of <grammar>
• <!ELEMENT name (firstName, lastName)>

• <grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>

<ref name="Name"/>
</start>

<define name="Name">
<element name="name">

<element name="firstName"> <text/> </element>
<element name="lastName">

<ref name="LastName">
</element>

</element>
</define>

<define name="LastName">
<element name="lastName"> <text/> </element>

</define>
</grammar>

• <!ELEMENT name (firstName, lastName)>

• <grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>

<ref name="Name"/>
</start>

<define name="Name">
<element name="name">

<element name="firstName"> <text/> </element>
<element name="lastName">

<ref name="LastName">
</element>

</element>
</define>

<define name="LastName">
<element name="lastName"> <text/> </element>

</define>
</grammar>

XML is case sensitive--
Note that defined terms are
capitalized differently

Common Usage 1Common Usage 1
• A typical way to use RELAX NG is to use a <grammar> with just the

root element in <start> and every element described by a <define>

• <grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>

<ref name="NOVEL">
</start>

<define name="NOVEL">
<element name="novel">

<ref name="TITLE"/>
<ref name="AUTHOR"/>
<oneOrMore>

<ref name="CHAPTER"/>
</oneOrMore>

</element>
</define>

...more...

• A typical way to use RELAX NG is to use a <grammar> with just the
root element in <start> and every element described by a <define>

• <grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>

<ref name="NOVEL">
</start>

<define name="NOVEL">
<element name="novel">

<ref name="TITLE"/>
<ref name="AUTHOR"/>
<oneOrMore>

<ref name="CHAPTER"/>
</oneOrMore>

</element>
</define>

...more...

Common Usage 2Common Usage 2
 <define

name="TITLE">
<element

name="title">
<text/>

</element>
</define>

 <define
name="AUTHOR">

<element
name="author">

<text/>
</element>

</define>

 <define
name="TITLE">

<element
name="title">

<text/>
</element>

</define>

 <define
name="AUTHOR">

<element
name="author">

<text/>
</element>

</define>

 <define

 <define

</grammar>

</grammar>

name="CHAPTER">
<element name="chapter">

<oneOrMore>
<ref

name="PARAGRAPH"/>
</oneOrMore>

</element>
</define>

name="PARAGRAPH">
<element name="paragraph">

<text/>
</element>

</define>

<define name="CHAPTER">
<element name="chapter">

<oneOrMore>
<ref

name="PARAGRAPH"/>
</oneOrMore>

</element>
</define>

<define name="PARAGRAPH">
<element name="paragraph">

<text/>
</element>

</define>

Replacing DTDsReplacing DTDs
• With <grammar> and multiple <define>s, we can

do essentially the same things as a DTD
• Advantages:

• RELAX NG is more expressive than a DTD; we can interleave
elements, specify data types, allow specific data values, use
namespaces, and control the mixing of data and patterns

• RELAX NG is written in XML
• RELAX NG is relatively easy to understand

• Disadvantages
• RELAX NG is extremely verbose

• But there is a “compact syntax” that is much shorter
• RELAX NG is not (yet) nearly as well known

• Hence there are fewer tools to work with it
• This situation seems to be changing

• With <grammar> and multiple <define>s, we can
do essentially the same things as a DTD
• Advantages:

• RELAX NG is more expressive than a DTD; we can interleave
elements, specify data types, allow specific data values, use
namespaces, and control the mixing of data and patterns

• RELAX NG is written in XML
• RELAX NG is relatively easy to understand

• Disadvantages
• RELAX NG is extremely verbose

• But there is a “compact syntax” that is much shorter
• RELAX NG is not (yet) nearly as well known

• Hence there are fewer tools to work with it
• This situation seems to be changing

Datatype LibrariesDatatype Libraries
• Complicated text constraints are

expressed using external type libraries
• External datatypes can be specialized

using parameters
• Two widely used general type libraries are

DTD and W3C XML Schema

• Complicated text constraints are
expressed using external type libraries

• External datatypes can be specialized
using parameters

• Two widely used general type libraries are
DTD and W3C XML Schema

W3C XML Schema Type LibraryW3C XML Schema Type Library

• Strings
• Numerics
• Dates and times
• URIs
• XML qualified names
• Binary encodings

• Strings
• Numerics
• Dates and times
• URIs
• XML qualified names
• Binary encodings

Modularity SupportModularity Support
• Inclusion of external schemas

• Reusable pattern libraries
• Reuse of external patterns
• Overriding external patterns
• Combining patterns

• Inclusion of external schemas
• Reusable pattern libraries

• Reuse of external patterns
• Overriding external patterns
• Combining patterns

W3C XML Schema ComparisonW3C XML Schema Comparison
• RELAX NG patterns provide the

functionality of several XML Schema
features

• RELAX NG doesn’t have the XML Schema
determinism constraints

• RELAX NG can define several
namespaces with a single schema

• XML Schema has wider vendor support
• RELAX NG doesn’t enforce identity

constraints

• RELAX NG patterns provide the
functionality of several XML Schema
features

• RELAX NG doesn’t have the XML Schema
determinism constraints

• RELAX NG can define several
namespaces with a single schema

• XML Schema has wider vendor support
• RELAX NG doesn’t enforce identity

constraints

W3C XML Schema BenefitsW3C XML Schema Benefits
• Can do other things than validation

• Data type assignment
• Type hierarchy modeling
• Automatic object mapping

• Good third party tool support
• Built in identity constraint enforcement

• Can do other things than validation
• Data type assignment
• Type hierarchy modeling
• Automatic object mapping

• Good third party tool support
• Built in identity constraint enforcement

RELAX NG BenefitsRELAX NG Benefits
• Simple and elegant schema language
• Good at handling complex unordered and

mixed content vocabularies
• Can handle ambiguous/nondeterministic

vocabularies
• Strong basis in theory

• Simple and elegant schema language
• Good at handling complex unordered and

mixed content vocabularies
• Can handle ambiguous/nondeterministic

vocabularies
• Strong basis in theory

Use in the Real WorldUse in the Real World
• XHTML
• OpenOffice
• DocBook
• RDF
• WSDL
• Possibly SVG

• XHTML
• OpenOffice
• DocBook
• RDF
• WSDL
• Possibly SVG

RELAX NG Tools (1/2)RELAX NG Tools (1/2)
• Jing

• An open source validator written in Java
• Sun’s MSV

• Another validator
• DTDinst

• Translates from DTDs into RNG syntax or RNG
“compact” syntax

• Jing
• An open source validator written in Java

• Sun’s MSV
• Another validator

• DTDinst
• Translates from DTDs into RNG syntax or RNG

“compact” syntax

RELAX NG Tools (2/2)RELAX NG Tools (2/2)
• Trang

• Translates RNG compact syntax into RNG syntax
• Translates RNG or RNG compact syntax into DTDs

• Sun’s RELAX NG Converter
• Translates DTDs into RNG syntax (but not well)
• Translates an XML Schema subset into RNG syntax

(imperfectly)

• Trang
• Translates RNG compact syntax into RNG syntax
• Translates RNG or RNG compact syntax into DTDs

• Sun’s RELAX NG Converter
• Translates DTDs into RNG syntax (but not well)
• Translates an XML Schema subset into RNG syntax

(imperfectly)

Schematron

What is Schematron?What is Schematron?
• A small schema language
• Helps both RNG and XSD
• Uses Xpath based validation as opposed

to grammars

• A small schema language
• Helps both RNG and XSD
• Uses Xpath based validation as opposed

to grammars

Schematron vs. XML SchemaSchematron vs. XML Schema
• Context dependent validation
• Algorithmic validation.
• Context dependent validation
• Algorithmic validation.

What Does It Look Like?What Does It Look Like?
• Two main constructs:

• assert
• report

• Two main constructs:
• assert
• report

<sch:schema
xmlns:sch="http://www.ascc.net/xml/schematron">

<sch:pattern name="genericID">

<sch:rule context="*[@ID]">

<sch:report test=”xpath that matches things which
should not be there"> The error message if something that
should not be there is there</sch:report>

<sch:assert test=”xpath that says what should be
there">The error message if something which should be
there, isn’t there</sch:assert>

</sch:rule>

</sch:pattern>

</sch:schema>

<sch:schema
xmlns:sch="http://www.ascc.net/xml/schematron">

<sch:pattern name="genericID">

<sch:rule context="*[@ID]">

<sch:report test=”number(@ID) != @ID"> Our ID’s
should be numbers</sch:report>

<sch:assert test=”@ID = (count(preceding::*[@ID]/@ID) +
1)">The ID should be equal to the count of the number of
elements with ID attributes.</sch:assert>

</sch:rule>

</sch:pattern>

</sch:schema>

With NamespacesWith Namespaces
<sch:schema xmlns:sch=http://www.ascc.net/xml/schematron
xmlns:n=”namespace”>

<sch:ns uri=”namespace" prefix=”n"/>

<sch:pattern name="genericID">

<sch:rule context=”n:p[@ID]">

<sch:assert test=”@ID = (count(preceding::n:p[@ID]/@ID) +
1)">The ID should be equal to the count of the number of
elements with ID attributes.</sch:assert>

</sch:rule>

</sch:pattern>

</sch:schema>

Equivalent to XML Schema, RNGEquivalent to XML Schema, RNG

<sch:pattern name=”p-rules">
<sch:rule context=”n:p">

<sch:assert test=”@ID">An id is needed on a p
element.</sch:assert>

</sch:rule>
</sch:pattern>

<sch:pattern name=”p-rules">
<sch:rule context=”n:p">

<sch:assert test=”@ID">An id is needed on a p
element.</sch:assert>

</sch:rule>
</sch:pattern>

Algorithmic ChecksAlgorithmic Checks
<sch:pattern name=”simplealgorithm">

<sch:rule context=”n:p[@ID]">
<sch:assert test=”(number(substring(@ID,0,5)) -

number(substring(@ID,6,5))) =
number(substring(@ID,12,1)) ">The first 5
numbers of the id minus the next 5 numbers
must equal the 12th number.</sch:assert>

</sch:rule>
</sch:pattern>

<sch:pattern name=”simplealgorithm">
<sch:rule context=”n:p[@ID]">

<sch:assert test=”(number(substring(@ID,0,5)) -
number(substring(@ID,6,5))) =
number(substring(@ID,12,1)) ">The first 5
numbers of the id minus the next 5 numbers
must equal the 12th number.</sch:assert>

</sch:rule>
</sch:pattern>

XPath

What is XPath?What is XPath?
• XPath is a syntax used for selecting parts

of an XML document
• The way XPath describes paths to

elements is similar to the way an
operating system describes paths to files

• XPath is almost a small programming
language; it has functions, tests, and
expressions

• XPath is a W3C standard
• XPath is not itself written as XML, but is

used heavily in XSL(T)

• XPath is a syntax used for selecting parts
of an XML document

• The way XPath describes paths to
elements is similar to the way an
operating system describes paths to files

• XPath is almost a small programming
language; it has functions, tests, and
expressions

• XPath is a W3C standard
• XPath is not itself written as XML, but is

used heavily in XSL(T)

TerminologyTerminology
 <library>

<book>
<chapter>
</chapter>
<chapter>

<section>
<paragraph/>
<paragraph/>

</section>
</chapter>

</book>
</library>

 <library>
<book>

<chapter>
</chapter>
<chapter>

<section>
<paragraph/>
<paragraph/>

</section>
</chapter>

</book>
</library>

• library is the parent of book;
book is the parent of the two
chapters

• The two chapters are the
children of book, and the
section is the child of the
second chapter

• The two chapters of the book
are siblings (they have the
same parent)

• library, book, and the second
chapter are the ancestors of
the section

• The two chapters, the
section, and the two
paragraphs are the
descendents of the book

• library is the parent of book;
book is the parent of the two
chapters

• The two chapters are the
children of book, and the
section is the child of the
second chapter

• The two chapters of the book
are siblings (they have the
same parent)

• library, book, and the second
chapter are the ancestors of
the section

• The two chapters, the
section, and the two
paragraphs are the
descendents of the book

PathsPaths
Operating system: XPath:
/ = the root directory /library = the root element (if named

library)
/users/bebo/foo = the
(one) file named foo in
bebo in users

/library/book/chapter/section =
every section element in a chapter in
every book in the library

. = the current directory . = the current element

.. = the parent directory .. = parent of the current element

/users/bebo/* = all the files
in /users/bebo

/library/book/chapter/* = all the
elements in /library/book/chapter

foo = the (one) file named foo
in the current directory

section = every section element
that is a child of the current element

Slashes (1/2)Slashes (1/2)
• A path that begins with a / represents an

absolute path, starting from the top of the
document
• Example: /email/message/header/from
• Note that even an absolute path can select more

than one element
• A slash by itself means “the whole document”

• A path that does not begin with a /
represents a path starting from the current
element
• Example: header/from

• A path that begins with a / represents an
absolute path, starting from the top of the
document
• Example: /email/message/header/from
• Note that even an absolute path can select more

than one element
• A slash by itself means “the whole document”

• A path that does not begin with a /
represents a path starting from the current
element
• Example: header/from

Slashes (2/2)Slashes (2/2)
• A path that begins with // can start from

anywhere in the document
• Example: //header/from selects every element

from that is a child of an element header
• This can be expensive, since it involves searching

the entire document

• A path that begins with // can start from
anywhere in the document
• Example: //header/from selects every element

from that is a child of an element header
• This can be expensive, since it involves searching

the entire document

Brackets and last() (1/2)Brackets and last() (1/2)
• A number in brackets selects a particular

matching child (counting starts from 1, except in
Internet Explorer)
• Example: /library/book[1] selects the first book of

the library
• Example: //chapter/section[2] selects the second

section of every chapter in the XML document
• Example: //book/chapter[1]/section[2]
• Only matching elements are counted; for example, if a

book has both sections and exercises, the latter are
ignored when counting sections

• A number in brackets selects a particular
matching child (counting starts from 1, except in
Internet Explorer)
• Example: /library/book[1] selects the first book of

the library
• Example: //chapter/section[2] selects the second

section of every chapter in the XML document
• Example: //book/chapter[1]/section[2]
• Only matching elements are counted; for example, if a

book has both sections and exercises, the latter are
ignored when counting sections

Brackets and last() (1/2)Brackets and last() (1/2)
• The function last() in brackets selects the last

matching child
• Example: /library/book/chapter[last()]

• You can even do simple arithmetic
• Example: /library/book/chapter[last()-1]

• The function last() in brackets selects the last
matching child
• Example: /library/book/chapter[last()]

• You can even do simple arithmetic
• Example: /library/book/chapter[last()-1]

StarsStars
• A star, or asterisk, is a “wild card”—it

means “all the elements at this level”
• Example: /library/book/chapter/* selects every

child of every chapter of every book in the
library

• Example: //book/* selects every child of every
book (chapters, tableOfContents, index, etc.)

• Example: /*/*/*/paragraph selects every
paragraph that has exactly three ancestors

• Example: //* selects every element in the
entire document

• A star, or asterisk, is a “wild card”—it
means “all the elements at this level”
• Example: /library/book/chapter/* selects every

child of every chapter of every book in the
library

• Example: //book/* selects every child of every
book (chapters, tableOfContents, index, etc.)

• Example: /*/*/*/paragraph selects every
paragraph that has exactly three ancestors

• Example: //* selects every element in the
entire document

Attributes (1/2)Attributes (1/2)
• You can select attributes by themselves, or

elements that have certain attributes
• Remember: an attribute consists of a name-value

pair, for example in <chapter num="5">, the attribute
is named num

• To choose the attribute itself, prefix the name with @
• Example: @num will choose every attribute named

num
• Example: //@* will choose every attribute,

everywhere in the document
• To choose elements that have a given attribute,

put the attribute name in square brackets
• Example: //chapter[@num] will select every chapter

element (anywhere in the document) that has an
attribute named num

• You can select attributes by themselves, or
elements that have certain attributes
• Remember: an attribute consists of a name-value

pair, for example in <chapter num="5">, the attribute
is named num

• To choose the attribute itself, prefix the name with @
• Example: @num will choose every attribute named

num
• Example: //@* will choose every attribute,

everywhere in the document
• To choose elements that have a given attribute,

put the attribute name in square brackets
• Example: //chapter[@num] will select every chapter

element (anywhere in the document) that has an
attribute named num

Attributes (2/2)Attributes (2/2)
• //chapter[@num] selects every chapter

element with an attribute num

• //chapter[not(@num)] selects every chapter
element that does not have a num attribute

• //chapter[@*] selects every chapter element
that has any attribute

• //chapter[not(@*)] selects every chapter
element with no attributes

• //chapter[@num] selects every chapter
element with an attribute num

• //chapter[not(@num)] selects every chapter
element that does not have a num attribute

• //chapter[@*] selects every chapter element
that has any attribute

• //chapter[not(@*)] selects every chapter
element with no attributes

Values of AttributesValues of Attributes
• //chapter[@num='3'] selects every chapter

element with an attribute num with value 3
• The normalize-space() function can be

used to remove leading and trailing spaces
from a value before comparison
• Example: //chapter[normalize-

space(@num)="3"]

• //chapter[@num='3'] selects every chapter
element with an attribute num with value 3

• The normalize-space() function can be
used to remove leading and trailing spaces
from a value before comparison
• Example: //chapter[normalize-

space(@num)="3"]

Axes (1/2)Axes (1/2)
• An axis (plural axes) is a set of nodes

relative to a given node; X::Y means
“choose Y from the X axis”
• self:: is the set of current nodes (not too useful)

• self::node() is the current node
• child:: is the default, so /child::X is the same as /X
• parent:: is the parent of the current node
• ancestor:: is all ancestors of the current node, up

to and including the root

• An axis (plural axes) is a set of nodes
relative to a given node; X::Y means
“choose Y from the X axis”
• self:: is the set of current nodes (not too useful)

• self::node() is the current node
• child:: is the default, so /child::X is the same as /X
• parent:: is the parent of the current node
• ancestor:: is all ancestors of the current node, up

to and including the root

Axes (2/2)Axes (2/2)
• descendant:: is all descendants of the current

node
(Note: never contains attribute or namespace

nodes)
• preceding:: is everything before the current node

in the entire XML document
• following:: is everything after the current node in

the entire XML document

• descendant:: is all descendants of the current
node

(Note: never contains attribute or namespace
nodes)

• preceding:: is everything before the current node
in the entire XML document

• following:: is everything after the current node in
the entire XML document

Axes (outline view)Axes (outline view)
Starting from a given node, the self, preceding, following,
ancestor, and descendant axes form a partition of all the
nodes (if we ignore attribute and namespace nodes)

Axes (tree view)Axes (tree view)
• Starting from a given node, the self, ancestor,

descendant , preceding, and following axes form a
partition of all the nodes (if we ignore attribute and
namespace nodes)

• Starting from a given node, the self, ancestor,
descendant , preceding, and following axes form a
partition of all the nodes (if we ignore attribute and
namespace nodes)

Axis ExamplesAxis Examples
• //book/descendant::* is all descendants of every

book
• //book/descendant::section is all section

descendants of every book
• //parent::* is every element that is a parent, i.e.,

is not a leaf
• //section/parent::* is every parent of a section

element
• //parent::chapter is every chapter that is a

parent, i.e., has children
• /library/book[3]/following::* is everything after

the third book in the library

• //book/descendant::* is all descendants of every
book

• //book/descendant::section is all section
descendants of every book

• //parent::* is every element that is a parent, i.e.,
is not a leaf

• //section/parent::* is every parent of a section
element

• //parent::chapter is every chapter that is a
parent, i.e., has children

• /library/book[3]/following::* is everything after
the third book in the library

More AxesMore Axes
• ancestor-or-self:: ancestors plus the current node
• descendant-or-self:: descendants plus the current

node
• attribute:: is all attributes of the current node
• namespace:: is all namespace nodes of the current

node
• preceding:: is everything before the current node in

the entire XML document
• following-sibling:: is all siblings after the current node

• Note: preceding-sibling:: and following-sibling:: do
not apply to attribute nodes or namespace nodes

• ancestor-or-self:: ancestors plus the current node
• descendant-or-self:: descendants plus the current

node
• attribute:: is all attributes of the current node
• namespace:: is all namespace nodes of the current

node
• preceding:: is everything before the current node in

the entire XML document
• following-sibling:: is all siblings after the current node

• Note: preceding-sibling:: and following-sibling:: do
not apply to attribute nodes or namespace nodes

Abbreviations for AxesAbbreviations for Axes
(none) is the same as child::

@ is the same as attribute::

. is the same as self::node()

.//X is the same as self::node()/descendant-or-

self::node()/child::X

.. is the same as parent::node()

../X is the same as parent::node()/child::X

// is the same as /descendant-or-self::node()/

//X is the same as /descendant-or-self::node()/child::X

(none) is the same as child::

@ is the same as attribute::

. is the same as self::node()

.//X is the same as self::node()/descendant-or-

self::node()/child::X

.. is the same as parent::node()

../X is the same as parent::node()/child::X

// is the same as /descendant-or-self::node()/

//X is the same as /descendant-or-self::node()/child::X

Arithmetic ExpressionsArithmetic Expressions
 + add
 - subtract
 * multiply
 div (not /) divide
 mod modulo (remainder)

 + add
 - subtract
 * multiply
 div (not /) divide
 mod modulo (remainder)

Equality TestsEquality Tests
• = means “equal to” (Notice it’s not ==)
• != means “not equal to”
• But it’s not that simple!

• value = node-set will be true if the node-set
contains any node with a value that matches
value

• value != node-set will be true if the node-set
contains any node with a value that does not
match value

• Hence,
• value = node-set and value != node-set

may both be true at the same time!

• = means “equal to” (Notice it’s not ==)
• != means “not equal to”
• But it’s not that simple!

• value = node-set will be true if the node-set
contains any node with a value that matches
value

• value != node-set will be true if the node-set
contains any node with a value that does not
match value

• Hence,
• value = node-set and value != node-set

may both be true at the same time!

For XML InformationFor XML Information
• Id(object)

• If arg is a node-set, each node is cast to string
• E.g. context of //footnote/attr(‘ref’) gets ref attributes

• Else arg is cast to a string
• Filters the context by picking node w/ ids in list

• Many space-separated Ids may be included

• Lang

• Id(object)
• If arg is a node-set, each node is cast to string

• E.g. context of //footnote/attr(‘ref’) gets ref attributes
• Else arg is cast to a string
• Filters the context by picking node w/ ids in list

• Many space-separated Ids may be included

• Lang

For Looking Around the ContextFor Looking Around the Context
• Count(node-set)

• Returns number of nodes in the argument
• Last()

• Returns number of nodes in the context
• Position()

• Returns the position of the current node in the
context

• Count(node-set)
• Returns number of nodes in the argument

• Last()
• Returns number of nodes in the context

• Position()
• Returns the position of the current node in the

context

For Names and NamespacesFor Names and Namespaces
• Local-name(node-set?)

• Returns local part of the name of the first node
• Name(node-set?)

• Returns entire qualified name of the first node
• Namespace-uri(node-set?)

• Returns the uri identifying the namespace of
the first node

• Local-name(node-set?)
• Returns local part of the name of the first node

• Name(node-set?)
• Returns entire qualified name of the first node

• Namespace-uri(node-set?)
• Returns the uri identifying the namespace of

the first node

Other Boolean OperatorsOther Boolean Operators
• and (infix operator)
• or (infix operator)

• Example: count = 0 or count = 1
• not() (function)

• The following are used for numerical comparisons only:
• < “less than” Some places may require <
• <= “less than Some places may require <=

or equal to”
• > “greater than” Some places may require >
• >= “greater than Some places may require >=

or equal to”

• and (infix operator)
• or (infix operator)

• Example: count = 0 or count = 1
• not() (function)

• The following are used for numerical comparisons only:
• < “less than” Some places may require <
• <= “less than Some places may require <=

or equal to”
• > “greater than” Some places may require >
• >= “greater than Some places may require >=

or equal to”

Some XPath FunctionsSome XPath Functions
• XPath contains a number of functions on node sets,

numbers, and strings; here are a few of them:
• count(elem) counts the number of selected elements

• Example: //chapter[count(section)=1] selects
chapters with exactly two section children

• name() returns the name of the element
• Example: //*[name()='section'] is the same as

//section
• starts-with(arg1, arg2) tests if arg1 starts with arg2

• Example: //*[starts-with(name(), 'sec']
• contains(arg1, arg2) tests if arg1 contains arg2

• Example: //*[contains(name(), 'ect']

• XPath contains a number of functions on node sets,
numbers, and strings; here are a few of them:
• count(elem) counts the number of selected elements

• Example: //chapter[count(section)=1] selects
chapters with exactly two section children

• name() returns the name of the element
• Example: //*[name()='section'] is the same as

//section
• starts-with(arg1, arg2) tests if arg1 starts with arg2

• Example: //*[starts-with(name(), 'sec']
• contains(arg1, arg2) tests if arg1 contains arg2

• Example: //*[contains(name(), 'ect']

AJAX

What is AJAX?What is AJAX?
• Asynchronous JavaScript and XML (or,

Asynchronous JavaScript and XML)
• Allows for the creation of fat-client web

applications
• Also known as: XMLHTTP, Remote

Scripting, XMLHttpRequest, etc.)

• Asynchronous JavaScript and XML (or,
Asynchronous JavaScript and XML)

• Allows for the creation of fat-client web
applications

• Also known as: XMLHTTP, Remote
Scripting, XMLHttpRequest, etc.)

AJAX Example (1/2)

AJAX Example (2/2)AJAX Example (2/2)
• An AJAX call is made to the server to get the states and

populate the select box (drop down). The server
dynamically creates JavaScript that is executed through
an eval statement. The final line of the JavaScript calls
the onchange event of the state drop down which then
retrieves all the cities for that state.

• The city drop down is populated and its onchange event
retrieves all the customers for a given city.

• When the customer changes, the server returns
JavaScript that replaces all customer fields with the
appropriate values.

• An AJAX call is made to the server to get the states and
populate the select box (drop down). The server
dynamically creates JavaScript that is executed through
an eval statement. The final line of the JavaScript calls
the onchange event of the state drop down which then
retrieves all the cities for that state.

• The city drop down is populated and its onchange event
retrieves all the customers for a given city.

• When the customer changes, the server returns
JavaScript that replaces all customer fields with the
appropriate values.

AJAX is Not NewAJAX is Not New
• Active use for at least six years
• Was only available in IE (since IE5 public

preview in 1999) until about three years
ago, in Mozilla (versions just before 1.0)

• Primarily referred to as ‘XMLHTTP’

• Active use for at least six years
• Was only available in IE (since IE5 public

preview in 1999) until about three years
ago, in Mozilla (versions just before 1.0)

• Primarily referred to as ‘XMLHTTP’

Traditional vs. AJAXTraditional vs. AJAX
• Interface construction is

mainly the responsibility
of the server

• User interaction via form
submissions

• An entire page is
required for each
interaction (bandwidth)

• Application is unavailable
while an interaction is
processing (application
speed)

• Interface construction is
mainly the responsibility
of the server

• User interaction via form
submissions

• An entire page is
required for each
interaction (bandwidth)

• Application is unavailable
while an interaction is
processing (application
speed)

• Interface is manipulated
by client-side JavaScript
manipulations of the
Document Object Model
(DOM)

• User interaction via
HTTP requests ‘behind
the scenes’

• Communication can be
restricted to data only

• Application is always
responsive

• Interface is manipulated
by client-side JavaScript
manipulations of the
Document Object Model
(DOM)

• User interaction via
HTTP requests ‘behind
the scenes’

• Communication can be
restricted to data only

• Application is always
responsive

XMLHTTPXMLHTTP
• An interface that allows for the HTTP

communication without a page refresh
• In IE, it is named XMLHTTP and

available as an ActiveX Object
• Mozilla and others then modeled a

native object called XMLHttpRequest
after IE’s ActiveX Object

• (The ‘others’ are Safari 1.2+, Opera 8+,
and Konqueror)

• An interface that allows for the HTTP
communication without a page refresh

• In IE, it is named XMLHTTP and
available as an ActiveX Object

• Mozilla and others then modeled a
native object called XMLHttpRequest
after IE’s ActiveX Object

• (The ‘others’ are Safari 1.2+, Opera 8+,
and Konqueror)

XMLHTTP MethodsXMLHTTP Methods

abort() Aborts a request.

open(method, uri,
[async, [username,
[password]]])

Sets properties of
request (does not
send). (Note about
async.)

send(content) Sends the request with
content in the body.
content should be null
unless method is ‘post’.

XMLHTTP PropertiesXMLHTTP Properties

onreadystatechange Function object to handle request
progress.

readyState Read only. Current request progress.

responseText Read only. response body as string.

responseXML Read only. Response body parsed as
text/xml and in DOM Document object

status Read only. HTTP response status
code.

Instantiating XMLHTTPInstantiating XMLHTTP

Handling ResponsesHandling Responses

Example Response XMLExample Response XML

Requested username is unavailable, but
the script has determined some
alternatives

Requested username is unavailable, but
the script has determined some
alternatives

Acting on a ResponseActing on a Response
• At this point the JavaScript alert() function

could be used but that would defeat one of
the reasons to use AJAX - allowing the
application to always remain responsive.

• A better choice is to manipulate the DOM
with JavaScript

• At this point the JavaScript alert() function
could be used but that would defeat one of
the reasons to use AJAX - allowing the
application to always remain responsive.

• A better choice is to manipulate the DOM
with JavaScript

Altered DOM After ManipulationAltered DOM After Manipulation

• …
• parentNode

• ul
• li

• Username bebo is not available
• Username bibo is available
• Username bebow is available
• Username beabeaux is available

• maindiv
• …

• …
• parentNode

• ul
• li

• Username bebo is not available
• Username bibo is available
• Username bebow is available
• Username beabeaux is available

• maindiv
• …

AJAX LibrariesAJAX Libraries
• SAJAX

• Makes things marginally easier
• Doesn’t support XML responses
• uses innerHTML, so can’t even use DOM

• CPAINT
• Supports XML and text responses
• Actively developed and mature
• Documentation a little immature

• JPSPAN
• Excellent abstraction
• Seamlessly “imports” server-side objects into JavaScript
• Clear documentation
• Doesn’t support Opera
• Limited usefulness

• SAJAX
• Makes things marginally easier
• Doesn’t support XML responses
• uses innerHTML, so can’t even use DOM

• CPAINT
• Supports XML and text responses
• Actively developed and mature
• Documentation a little immature

• JPSPAN
• Excellent abstraction
• Seamlessly “imports” server-side objects into JavaScript
• Clear documentation
• Doesn’t support Opera
• Limited usefulness

Determining Whether to Use
AJAX
Determining Whether to Use
AJAX
• AJAX is good for making Web-based

versions of traditionally desktop
applications

• AJAX opens up new possibilities for web
apps, but does not necessarily benefit
traditional possibilities

• If you need serious workarounds to bring
usability up to expected levels, you’re
probably misusing AJAX

• AJAX is good for making Web-based
versions of traditionally desktop
applications

• AJAX opens up new possibilities for web
apps, but does not necessarily benefit
traditional possibilities

• If you need serious workarounds to bring
usability up to expected levels, you’re
probably misusing AJAX

Thank You for Your Patience
and Understanding!

Comments and questions are
welcome

bebo@slac.stanford.edu

Interested in classes or
tutorials at your site?

Let’s talk

bebo@slac.stanford.edu

	Bebo White� bebo@slac.stanford.edu
	Tutorial Description
	Topics*
	What Is Markup?
	Computer Markup (1/3)
	Computer Markup (2/3)
	Computer Markup (3/3)
	Markup – ISO-Definitions
	Markup Language Features
	Hypertext Markup Language
	Some Problems (1/2)
	Some Problems (2/2)
	Observations on HTML
	XML (1/2)
	XML (2/2)
	XML History
	The W3C Standards* Process
	XML Facts
	XML and HTML
	XML Characteristics
	The Two Worlds of XML
	The Two Worlds United
	XML is More General
	Better Rendering than HTML
	XML Treats Documents like Databases
	XML Example
	What is Structure
	When Structure is Essential
	What’s the Difference?
	XML Design Principles
	Opportunities with XML
	Web Usage
	Some Additional XML Details
	Well-formedness (1/2)
	Well-formedness (2/2)
	Tutorial Outline
	Part 1: Background for XML
	Main Components of an XML Document
	The Basic Rules
	Common Errors for Element Naming
	Try It!
	Elements vs. Attributes
	Problems Using Attributes
	Part 2: Legal Building Blocks of XML
	What are the Parts of an XML Document?
	Error Handling
	Case Sensitivity
	Practice Validating XHTML
	XML System Architectures
	An (X)HTML System
	How Do You Get the Data?
	Server-side XML Publishing
	XML Everywhere
	HTML Compatibility
	Footnote
	The XML “Alphabet Soup” (1/3)
	The XML “Alphabet Soup”(2/3)
	The XML “Alphabet Soup”(3/3)
	XML Information Set
	Document Analysis
	Project Requirements
	Identifying Information Items
	Issues to Think About
	Restrictions on Data Items
	IE Data Islands
	What is a Data Island?
	Content Models
	Ambiguity
	Web-compliant Data Definitions
	Why Use a DTD?
	XML 1.0 DTDs
	XML Declaration
	Document Type Definition
	Document Type Definition
	DOCTYPE
	Mixed Specification
	Basic Operators
	Data
	PCDATA
	CDATA
	Diagramming Technique (1/2)
	Diagramming Technique (2/2)
	Declaration, Definition, Data
	Cautions Concerning DTDs
	The DTD (schema)
	Terminology (1/4)
	Terminology (2/4)
	Terminology (3/4)
	Terminology (4/4)
	Anatomy of an Element
	Elements
	Element Type Declaration
	Children Specification
	Attributes (1/2)
	Attributes (2/2)
	Attribute-List Declaration
	Attribute Types (1/2)
	Attribute Types (2/2)
	Attribute Defaults
	General Entities (1/2)
	General Entities (2/2)
	Entity Examples
	Entity Declaration
	Parameter Entities
	Character References
	Comments (1/2)
	Comments (2/2)
	Marked Sections
	Processing Instructions
	Processing Instructions
	The “XML Declaration” PI
	Notations
	Notations
	Identifiers
	The Need For A Better DTD
	Schema Languages
	XML Schemas
	XML Schema Specification
	XML Schema in short…
	Solution: Namespaces
	Namespaces
	Namespaces: Declaration
	Things Namespace Almost Do
	Pros and Cons of Namespaces
	Things are Confusing about Namespaces
	Example 1
	Example 2
	Schema Element
	Complex Type Definitions (1/3)
	Complex Type Definitions (2/3)
	Complex Type Definitions (3/3)
	Simple Type Definitions (1/3)
	Simple Type Definitions (2/3)
	Simple Type Definitions (3/3)
	Element Content (1/2)
	Element Content (2/2)
	Power of XML Schema
	Developing Schemas
	XSL (1/2)
	XSL (2/2)
	Why Transform?
	Some Special Transforms
	Document Transformation
	XSL Tranformations – XSL(T)
	XSL(T) Overview
	XSL(T) Processing Model (1/3)
	XSL(T) Processing Model (2/3)
	XSL(T) Processing Model (3/3)
	XSL(T) Elements (1/2)
	XSL(T) Elements (2/2)
	XSL(T) Processing Model
	Creating the Result Tree: Repetition
	Creating the Result Tree: Sorting
	XSL(T) Example
	Source Tree
	The Boilerplate
	From Copy to Transform
	XSL Style Sheet
	Results
	Models for Tree Editing
	Functional Tree Rewriting
	Rule-based (Rewriting Systems)
	Template-based Processing
	Imperative
	What’s the Biggest Drawback to Tree Editing?
	What Side are We On?
	XSL(T) and Transformation Styles
	Where does XSL(T) Fit?
	XML Documents as Trees of Nodes
	XML Document Order
	XML Notions
	What’s Inside an XSL(T) Transform?
	What Goes in a Template?
	How Do You Apply One?
	Caveats
	Template Styles
	At the Top Level
	Anatomy of a Template
	Trivial Templates: Tag Renaming
	Template Options
	The Ultimate Default
	Priority Example
	Template Priority
	What Goes in a Template?
	Instructions: apply-templates
	Keeping Things in Variables
	Setting XSL(T) Variables
	Instructions: call-template
	Using XSL(T) Variables
	Data Handling via Functions
	String Values
	For Strings
	For Numbers and Logic
	<xsl:value-of>
	<xsl:copy-of>
	<xsl:copy>
	<xsl:if>
	<xsl:choose>
	<xsl:for-each>
	<xsl:apply-imports>
	<xsl:variable>
	<xsl:message>
	<xsl:fallback>
	<xsl:number>
	Numbering Example
	Building XML from Parts
	Oddities of XPath and XSL(T)
	Surface Oddities
	Strategies for XSL(T)
	Strategies…
	More on XSL(T)
	Example 3
	Example 4
	Example 5: Room Entity (1/3)
	Example 5: Room Entity (2/3)
	Example 5: Room Entity (3/3)
	Rethinking: The Room Entity
	What is XHTML?
	XHTML Introduction
	Example XHTML Document
	Differences To HTML (1/4)
	Differences To HTML (2/4)
	Differences To HTML (3/4)
	Differences To HTML (4/4)
	Validate XHTML
	Part 3: XML and Supplementary Technologies
	What is the XML DOM? (1/3)
	What is the XML DOM? (2/3)
	Sample XML Document
	The Corresponding DOM Tree
	XML DOM Interfaces/Classes
	Parsing the DOM
	Creating XML DOM Tree with JavaScript
	Data Access
	SAX and DOM
	Difference between SAX and DOM (1/2)
	Difference between SAX and DOM (2/2)
	SAX Callbacks
	XML DOM in the Context of a Web Project
	W3C DOM with JavaScript (1/3)
	W3C DOM with JavaScript (2/3)
	W3C DOM with JavaScript (3/3)
	Cautions with DOM
	W3C DOM with Cascading Style Sheets (CSS)
	Cascading Style Sheets (CSS)
	6 Popular CSS Properties
	CSS Properties
	CSS Syntax
	CSS Style Sheets
	External Style Sheet
	CSS Applied to XHTML Example
	XHTML for CSS
	Style Sheet
	RELAX NG
	What is RELAX NG? (1/2)
	What is RELAX NG? (2/2)
	Design Goals
	Basics
	Syntax
	Basic Patterns
	Cardinality
	Composition
	Named Patterns
	Constraining Text Values
	Basic Structure (1/2)
	Basic Structure (2/2)
	Data Elements (1/2)
	Data Elements (1/2)
	Defining Tags
	RELAX NG Describes Patterns
	Easy Tags
	Example
	Enumerations
	More About Data (1/2)
	More About Data (2/2)
	<group>
	Attributes
	More About Attributes
	Still More About Attributes
	<list>
	<interleave>
	Interleave Example
	<mixed>
	Example of <mixed>
	The Need for Named Patterns
	Syntax of <grammar>
	Use of <grammar>
	Long Example of <grammar>
	Common Usage 1
	Common Usage 2
	Replacing DTDs
	Datatype Libraries
	W3C XML Schema Type Library
	Modularity Support
	W3C XML Schema Comparison
	W3C XML Schema Benefits
	RELAX NG Benefits
	Use in the Real World
	RELAX NG Tools (1/2)
	RELAX NG Tools (2/2)
	 Schematron	
	What is Schematron?
	Schematron vs. XML Schema
	What Does It Look Like?
	With Namespaces
	Equivalent to XML Schema, RNG
	Algorithmic Checks
	XPath
	What is XPath?
	Terminology
	Paths
	Slashes (1/2)
	Slashes (2/2)
	Brackets and last() (1/2)
	Brackets and last() (1/2)
	Stars
	Attributes (1/2)
	Attributes (2/2)
	Values of Attributes
	Axes (1/2)
	Axes (2/2)
	Axes (outline view)
	Axes (tree view)
	Axis Examples
	More Axes
	Abbreviations for Axes
	Arithmetic Expressions
	Equality Tests
	For XML Information
	For Looking Around the Context
	For Names and Namespaces
	Other Boolean Operators
	Some XPath Functions
	AJAX
	What is AJAX?
	AJAX Example (2/2)
	AJAX is Not New
	Traditional vs. AJAX
	XMLHTTP
	XMLHTTP Methods
	XMLHTTP Properties
	Instantiating XMLHTTP
	Handling Responses
	Example Response XML
	Acting on a Response
	Altered DOM After Manipulation
	AJAX Libraries
	Determining Whether to Use AJAX
	Thank You for Your Patience and Understanding!��Comments and questions are welcome�
	Interested in classes or tutorials at your site?��Let’s talk

