Future of Higgs Workshop: May 5, 2001

EXTRA-DIMENSIONAL EWSB

AND FERMION MASSES

Tim M.P. Tait

Argonne National Laboratory

Research done in collaboration with David E. Kaplan *

Outline:

- 1. Hierarchy
- 2. Flavor
- 3. Experimental Constraints
- 4. Outlook

^{*}JHEP **0006** 020,2000, and more to appear soon!

The Hierarchy Problem

- ullet As we all know, the hierarchy between M_W and M_P is puzzling
 - Why is the weak scale so much smaller than the Planck scale?
 - How is the hierarchy maintained in the face of radiative corrections?

- The ADD solution: There is NO Hierarchy
 - Gravity seems weak because it is "diluted" in n
 extra dimensions

The Flavor Puzzle

- Our goal is to see if extra dimensions can also shed some light on flavor:
 - Large Hierarchy of Masses

$$M_u \ll M_c \ll M_t$$
 $M_d \ll M_s \ll M_b$

- Shouldn't we expect all the quarks to have masses of order M_t ?
- Puzzling Pattern of Mixings

$$V_{us} \sim 1/5$$
 $V_{cb}, V_{ub} \ll 1$ $V_{us} \times V_{cb} \sim V_{ub}$

- Can we solve the flavor puzzle and the hierarchy problem at the same time?
- Maybe a hybrid model with flavor from one extra dimension and gravity in even more? [J. Lykken & S. Nandi]

The Arkani-Hamed & Schmaltz Model

- Fermion zero-modes localized in an extra dimension
- ullet SU(2) singlets and doublets at different locales
- Higgs (VEV) distributed evenly in the bulk
- Gauge fields in the bulk
- Small overlap of the wave functions
 - → small 4d Yukawa couplings
- Some fine-tuning for M_t
- Empty Matrices $\rightarrow \epsilon_K$?

Localizing Fermions

ullet 5d fermion Ψ coupled to scalar Φ

$$\overline{\Psi}(i \not \! \partial - \gamma^5 \partial_5 + f \Phi) \Psi$$

- ullet Notice a massless Ψ is a 4-component field
- A non-trivial $\langle \Phi \rangle$ that crosses zero somewhere localizes a zero mode about that point:

• We can split fermions by adding masses:

Compactification

- In order for the theory to look 4d at low energies, we want to compactify the extra dimension
- For example, on a circle: S^1
- ...but this causes other problems:

- Generally, 5d theories are not chiral
- Each SM fermion has a mirror partner
- The VEV $\langle \Phi \rangle$ is unstable
- We address these problems with orbifold boundary conditions

Orbifold

• For example, S^1/\mathcal{Z}_2 :

$$\Psi(x, x_5) = \gamma_5 \Psi(x, -x_5)$$
 $\Psi(x, L + x_5) = \gamma_5 \Psi(x, L - x_5)$
 $\Phi(x^{\mu}, -y) = -\Phi(x^{\mu}, y)$
 $\Phi(x^{\mu}, L/2 + y) = -\Phi(x^{\mu}, -L/2 + y)$

• This mods out the zero mass mirror partner:

- ullet A bulk scalar potential $(\Phi^2-u^2)^2$ clashes with the boundary conditions [H. Georgi, A. Grant, G. Hailu]
- Fermion mass terms forbidden by the orbifold

Odd Mass Term

 We can build the AS model with an orbifold by adding an "odd" mass:

- For example, the odd mass can arise from another bulk scalar coupled to the fermions
- The EWSB Higgs can be even or odd under the orbifold, and might have a non-trivial VEV as a result

Flavor on an Orbifold I: Bulk Higgs

ullet Another flavor model does not invoke the odd mass but different $(\mathcal{O}(1))$ couplings to Φ

- ullet Zero modes go like $1/\mathrm{Cosh}^{2f}[x_5/2]$
- Doublets at $x_5=0$, singlets at $x_5=L/2$:

ullet For $M_*L\sim 20$, the widths range from 1/5 to 3/2, and 5d Yukawas from 1/3 to 3

Model II: Higgs on a Boundary

• Higgs (VEV) only at a boundary ($x_5=0$)

- Yukawa suppression from overlap with "Higgs brane"
- ullet For $M_*L\sim 20$, this requires widths and 5d Yukawas between 1/3 and 3
- ullet No fine-tuning for M_t
- ullet Automatically have: $V_{us} imes V_{cb} \sim V_{ub}$

Flavor-changing Neutral Currents

 The gauge boson zero modes couple universally to all of the fermions, but the higher modes do not:

After CKM rotation, this introduces flavor-violating interactions

$$\left(egin{array}{cccc} \overline{d} & \overline{s} & \overline{b} \end{array}
ight) L_d^\dagger \left(egin{array}{cccc} c_1^n & 0 & 0 & 0 \ 0 & c_2^n & 0 & 0 \ 0 & 0 & c_3^n \end{array}
ight) L_d \left(egin{array}{cccc} d & s \ s & b \end{array}
ight)$$

ullet The flavor-violating terms are proportional to rotation matrices (left- or right-handed) and Δc^n

K^0 - $\overline{K^0}$ Mixing

ullet For example, consider a contribution to K^0 - $\overline{K^0}$ mixing from KK gluons

[A. Delgado, A. Pomarol, M. Quiros]

- In the SM these processes are weak loop effects
- The $\Delta S = 2$ effective Hamiltonian

$$H^{\Delta S=2} \sim rac{lpha_S}{M_c^2} \sum_{n=1}^{n^*} rac{V^\dagger C V}{n^2}$$

- ullet KK mass scale $M_c=L^{-1}$
- The sum is cut off at n^* (but results basically independent of n^*)

Limits on Models of Flavor

- ullet By requiring the right order of magnitude for Δm_K and ϵ_K , we derive limits on M_c
- ullet In specific models, this is related to the fundamental scale M_{st}

- ullet One can obtain similar bounds from ϵ_K'/ϵ_K (somewhat weaker than the ϵ_K ones)
- $M_* \sim (10^4-10^6) imes M_W$: Extra-dimensional flavor seems unlikely to coexist with a hierarchy solution
- SUSY models?

What about the Higgs?

- If the Higgs field lives in the extra dimension, this may impact Higgs phenomenology
- Kaluza-Klein modes for the Higgs (n-Higgs doublet model) [J. Gunion]
- EWSB VEV could be "shared":
 - Reduced Z-Z-h (W-W-h) interaction strengths
 - Processes like $t \bar{t} h$ and $b \bar{b} h$ could become more important as discovery modes
 - Rare decays like $h
 ightarrow \gamma \gamma$ could be enhanced (or suppressed)
- Some Higgs modes may have flavor-violating couplings like the gauge boson KK modes did
 - $h
 ightarrow au \mu$? [T. Han]
- Some modes may couple strongly to light fermions

Outlook

- An extra dimension can provide interesting solutions to the flavor puzzle
- FCNC constraints are quite strong, and seem to disfavor a combined extra-dimensional solution of hierarchy and flavor
- Unusual Higgs phenomenology can result!