Higgs Boson Precision Studies at a

Linear Electron Positron Collider

Fermilab 03/05/2001

Klaus Desch Universität Hamburg

Workshop on the future of Higgs Physics

- Introduction
- The TESLA Collider
- Experimentation for Higgs Physics
- The Profile of the Higgs Boson
- Interpretation 1: Global Fits
- Interpretation 2: SUSY
- Conclusion

Introduction

Precise determination of the properties of the Higgs boson (once it has been discovered at Tevatron or LHC) is the key to understand electro–weak symmetry breaking and the origin of mass.

Higgs Bosons have a very rich phenomenology. We need a Higgs factory to address all essential elements of the Higgs mechanism. Such a Higgs factory should offer:

- Large production rate
- Various production modes
- Observability of all decay modes
- Well defined initial state
- Low Backgrounds
- Excellent experimental accuracy

 \Rightarrow An Electron–Positron Linear Collider !

The TESLA Collider

Crucial Parameters:

Technology	superconducting linear accelerator (1.3 GhZ)
max. Energy	500 GeV (Phase 1) 800++ GeV (Phase 2)
Luminosity	3.4 $ imes 10^{34}$ 5 $ imes 10^{34} { m cm}^{-2} { m s}^{-1}$
Polarization	Electrons 80%, Positrons 40–60%
Bunchsize@IP	5 / 553 nm 2 / 391 nm ($ ightarrow$ Beamstrahlung)
Options	$\gamma\gamma$, $e\gamma$, e^-e^-
	Giga Z

The TESLA Machine

Figure 3.2.1: The 9-cell niobium cavity for TESLA.

- Gradient needed for 500 GeV (23.4 MV/m) routinely achieved in 9-cell cavities
- Gradient needed for 800 GeV (37.5 MV/m) achieved in single-cell structures

Beamstrahlung

Beams are extremely collimated with large bunch charge \rightarrow electrons of one bunch radiate against the coherent field of the other bunch

$$dE\sim rac{N^2}{\sigma_x^2\sigma_z}$$

ightarrow average energy loss 1.5% for electrons/positrons at 500

GeV

photons are very collimated around beampipe, but

- $pprox 0.6 imes 10^5 e^+ e^-$ -pairs per bunch crossing
- pprox 1 hadronic event ($\gamma\gamma
 ightarrow$ hadrons) per 10 bunches
- secondaries (neutrons, ...)

Beamstrahlung II

Consequences:

- 1. Shield Detector against low-angle e^+e^- -pairs and secondaries \Rightarrow Mask
- 2. Hadronic $\gamma\gamma$ -events might overlay real physics events: recognize them!

3. Beam particles lose energy before interaction (similar to ISR)

A Detector for TESLA

- take advantage of new technologies and LC goodies (e.g. beampipe radius 1 cm)
- design driven by Higgs physics in many aspects:
 - Vertex-Detector
 - Central Tracking
 - Calorimetry

A Detector for TESLA

Flavour Tag \rightarrow Vertexing for Higgs Branching Ratios (b/c)

Momentum Resolution \rightarrow Large TPC for optimal recoil mass resolution

Energy Flow

 \rightarrow SiW Calo

The Profile of the Higgs Boson

Production Processes

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	74000	35000	27000
m_H = 160	52000	29000	24000
<i>m_H</i> = 250	5500	16500	19000

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	15500	37500	158000
m_H = 160	7500	25000	126000
m_H = 250	6500	8000	71000

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	_	90	2600
m_H = 160	_	-	1500
m_H = 250	-	_	390

	500 fb $^{-1}$	500 fb $^{-1}$	1000 fb $^{-1}$
	350 GeV	500 GeV	800 GeV
m_H = 120	_	80	160
m_H = 160	_	20	120
m_H = 250	_	_	30

Gold plated channel:

$$e^+e^-
ightarrow ZH$$
 with $Z
ightarrow e^+e^-, \mu^+\mu^-$

NLC at 350 GeV ($\mu^+\mu^-X$)

Use recoil mass against $\ell^+\ell^-$ pair:

 \Rightarrow independent of Higgs decay

 \Rightarrow direct probe of Higgs coupliung to the Z

$$\Delta\sigma_{HZ}/\sigma_{HZ}pprox$$
 2%

(350 GeV/ 500 fb $^{-1}$)

Mass Measurement

Spin and CP Quantum Numbers

- Observation of $H o \gamma\gamma$ or $\gamma\gamma o H \Rightarrow$ Spin eq 1
- β dependence of HZ cross section at threshold

• Angular distributions of the fermions in $ZH
ightarrow far{f}H$

Higgs Couping to Gauge Bosons

• unambigous g_{HZZ} coupling from $e^+e^-
ightarrow HZ$ using recoil mass method

- g_{HWW} in two ways:
 - 1. WW–fusion cross section $e^+e^-
 ightarrow H
 u_e n ar u_e$
 - 2. Branching ratio BR($H
 ightarrow W^+W^-$)

WW–Fusion:

Higgs Couping to Gauge Bosons

disentangle Higgsstrahlung and WW–Fusion through different spectra in missing mass:

Accuracies:

Measurement	120 GeV	140 GeV	160 GeV
$\sigma(e^+e^- ightarrow HZ)$ (1)	2.5%	2.7%	3.0%
$\sigma(e^-e^- o H u_e ar u_e)$ (2)	2.8%	3.7%	13.0%
BR($H ightarrow WW^{(st)}$) (1)	5.1%	2.5%	2.1%
BR($H ightarrow ZZ^{(*)}$) (1)			16.9%

500 fb $^{-1}$, (1): 350 GeV, (2): 500 GeV

Higgs "Coupling" to Photons

• Higgs production at the $\gamma\gamma$ collider: $\gamma\gamma
ightarrow H$

large cross section but also large backgrounds QCD background under control needs very good c/b supression $\Delta\Gamma_{\gamma\gamma}/\Gamma_{\gamma\gamma}=2-3\%$

The Total Higgs Decay Width

For $m_H < 2m_Z$ the total width Γ_H is too small (in the SM) to be measured directly \Rightarrow Semi-direct method:

$$egin{aligned} BR(H o X) &= & rac{\Gamma_{ ext{partial}}(H o X)}{\Gamma_{ ext{tot}}} \ &\Rightarrow \Gamma_{ ext{tot}} &= & rac{\Gamma_{ ext{partial}}(ext{from production})}{BR(H o X)} \end{aligned}$$

Possibilities:

- (1) $X = \gamma \gamma$: Good accuracy from $\gamma \gamma o H$ but poor $BR(H o \gamma \gamma)$ measurement.
- (2) X = WW: Good measurement for both production (WW o H) and BR(H o WW) .
- (3) X = WW in decay and X = ZZ in production $(e^+e^- \rightarrow HZ)$ and assume $g_{HZZ} = g_{HWW} \cos \theta_W$.

Option	120 GeV	140 GeV	160 GeV
(1)	23%		
(2)	6.1%	4.5%	13.4%
(3)	5.6%	3.7%	3.6%

500 fb⁻¹ at 500 GeV

Higgs Coupling to Fermions

main task:

disentagle b-,c- and g+uds jets use simultaneous binned likelihood fit to the shapes of three tagging variables

TESLA

Higgs Coupling to Fermions

Accuracy on Higgs Branching Ratios (TESLA)

decay mode	m_H = 120 GeV	m_H = 140 GeV
$H o b ar{b}$	2.4%	2.6%
H ightarrow c ar c	8.3%	19.0%
H ightarrow gg	5.5%	14.0%
$H o au^+ au^-$	5.0%	8.0%
$H ightarrow W^+W^-$	5.1%	2.5%
$H o \gamma \gamma$	\sim 20%	

for 500 fb^{-1} at $\sqrt{s}=$ 350 GeV

NLC study (J. Brau et al.) at $\sqrt{s} = 500$ GeV yields almost consistent numbers (some details to be understood)

Higgs Coupling to top-Quark

Signature (for m_H <160 GeV): $t\bar{t}H
ightarrow WWbbbb$

(8 fermions!)

Analysis done for hadronic and semileptonic WW finals states using an ANN

Low cross section and many massive particles

ightarrow need high luminosity and high energy

measurement of Higgs self coupling:

 $e^+e^-
ightarrow q ar q b ar b b ar b$ and $e^+e^-
ightarrow \ell^+\ell^- b ar b b ar b$

needs very efficient b-tagging and

jet reconstruction (energy flow measurement)

Interpretation 1: A Global Fit

How to make most efficient use of the whole set of measurements? \Rightarrow a global fit (HFITTER).

Include experimental correlation between the different measurements. Theoretical uncertainties could be (but are not so far) included into the fit.

m_H	120 GeV	140 GeV
g _{HZZ}	1 %	1 %
G HWW	1 %	2 %
9 ньь	2 %	2 %
<i>G</i> Hcc	3 %	10 %
G Htt	3 %	6 %
$g_{H au au}$	3 %	5 %
<u>ghww</u> ghzz	2 %	2 %
<u>9нсс</u> 9ньь	4 %	10 %
<u>9нтт</u> 9ньь	3 %	4 %
<u> </u>	3 %	4 %
<u> </u>	3 %	4 %

Interpretation 1: Global Fit

Interpretation 2: Supersymmetry

Situation with LHC only:

Region with only one 'SM-like' Higgs visible

- is it supersymmetric ?
- can one determine SUSY parameters ? ($\Rightarrow m_A$?)

Distinguish SM from MSSM

In the MSSM the Decay Branching Ratios differ from the SM values. Even without seeing the heavy Higgs Bosons SM and MSSM can be distiguished.

...but the reach in m_A depends on the SUSY parameters.

Distinguish SM from MSSM

and even m_A can be indirectly estimated:

Conclusion

The experimental status in 2012 (PDG) might look like that:

Let's do these measurements!

- We know how to do them (machine, detector, analysis)
- We know many ways how to interpret them (theory)
- We do not know a more promising way to obtain this important insight into microscopic physics.