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Motivation

If our current particle picture of Dark Matter is correct, the LHC is
likely to be a Dark Matter factory. Realistic models containing a Dark
Matter particle tend to be very similar.

• A symmetry is added to keep Dark Matter stable → Dark Matter
is produced in pairs.

• Symmetries which keep Dark Matter stable are often taken from
other sources (because we prefer as simple a model as possible),
such as:

– Proton Stability (R-Parity in SUSY)

– Custodial Symmetry (solving Little Hierarchy Problem)

– 5D momentum conservation (KK number conservation in UED)

“Other Sources” for the symmetry generically means “Other Par-
ticles”.



Other Particles

Other Particles means that the Dark Matter is generically produced

from the decay of a heavier particle which has SM quantum numbers.

(such as a squark, slepton, T-Parity-odd fermion, etc)

All masses require one to add the missing particle to a visible par-

ticle. Therefore expected signatures of new physics contain no way

to directly obtain the mass of a particle, from the 4-vectors in the

event.

e.g. In a visible decay Z → l+l−, it is trivial to get a consistent

estimator for the Z mass: m2 = (pl+ + pl−)
2. This estimator m2

has the property that its mean, 〈m2〉 converges to the Lagrangian

parameter M2
Z. This provides the strongest available indicator (to

cut on) indicating that this is a Z.

For events with missing particle, no such thing is possible. (yet!)



Existing Studies (Barr Topology)

Existing studies all on fit-

ting distribution in a vari-

able correlated to masses. If

we must rely on such things,

this is troublesome

• Mass determinations are

very sensitive to a small

number of events (those

occuring at inflection

points and endpoints).

• Detector resolution

makes all (Barr-type)

distributions look

similar.

[Gjelsten, Miller, Osland

hep-ph/0410303]



Existing Studies: Cross Sections as Probability

Densities

What are these studies doing, from a theoretical/statistics perspec-

tive? First let us define a probability distribution for an event. A

cross section generally is given by
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µ
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is a zero-dimensional projection of a high-dimensional phase space,

and contains very little information! Buried in here somewhere is all

the information that is to be had. Let us do a little rearrangement

to retain all information in the high-dimensional space.
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this is a probability density expressing the probability of a particular

configuration of momenta. For N external particles, it is a 3N − 4

dimensional space.



Cross Sections as Probability Densities II
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In principle, one could directly compare this PDF (Probability Density
Function) between simulated events and data. But, high-dimensional
spaces require a lot of data to map out.

• Project onto lower dimensional space (e.g. Breit-Wigner, end-
point/edge techniques)

• Use a Likelihood or “Matrix Element” method

The Neyman-Pearson lemma tells us that the most powerful statis-
tic for differentiating two hypotheses λ and λ′ is the ratio of two
Likelihoods. Our Likelihood is

L(λ|{pµ
i }) =

N∏
i=1

P (pµ
i |λ).



Topology

Matrix Element Methods are powerful, but also complicated. And,
we don’t know the Lagrangian!

Let’s try something simpler. What can we do with just phase space?
(assuming the Matrix Element is a constant)

To examine this, let us choose the tt̄ di-lepton topology, which is
identical to many interesting SUSY decay topologies.

We have generalized the meth-

ods I will describe to any pro-

cess with exactly 2 missing par-

ticles, and 2 or more visible par-

ticles.

The vector p0 is the initial

state. This diagram is kine-

matic. e.g. this also works for

t-channel production.



Topology ctd. . .

This topology can be applied

to many processes with 4

visible and 2 invisible particles.

For simplicity in analysis we

will further assume MY = MY ′,

MX = M ′
X, and MN = M ′

N .

Examples that fit this:

tt → bW+bW− → bl+νbl−ν̄

χ̃0
2χ̃0

2 → ll̃ll̃ → llχ̃0
1llχ̃0

1

q̃q̃ → qχ̃0
2qχ̃0

2 → qll̃qll̃ → qllχ̃0
1qllχ̃0

1

t̃t̃ → bχ̃+bχ̃− → bW+χ̃0
1bW−χ̃0

1



Changing Variables

If we want to talk about masses, the first thing we had better do is
change variables.

The tt̄ di-lepton topology at the LHC contains 4 kinematic unknowns,
which is nice because it also has 4 unknown masses.

a = (p2 + p4 + p6)
2

b = (p2 + p4)
2

c = (p1 + p3 + p5)
2

d = (p1 + p3)
2

0 = p/x − p1x − p2x

0 = p/y − p1y − p2y

0 =
√

sσ − pvz − p1z − p2z

0 =
√

sτ − Ev − E1 − E2

M2
1 = E2

1 − ~p2
1

M2
2 = E2

2 − ~p2
2

This variable change is non-linear, and incurs a Jacobian J (important
if you want to integrate your Probability Density in the mass basis!)



Changing Variables, ctd. . .

Writing the same thing in integral form, first write the PDF with the

Dark Matter’s mass constraint explicitly.
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Simplified Likelihood

Let us try to characterize what’s going on in mass space, by con-

structing the likelihood L(λ|{pµ
i }) =

∏
i Pi({p

µ
i }|λ) in the narrow width

approximation. Note that our δ(a− (p1 + p3)
2) (etc) is exactly what

would arise from a Matrix Element containing narrow widths.

This is identical to taking the integrand to be 1 after our variable

change. The P ({pµ
i }|λ) is zero in regions where the variable change

cannot be performed (would result in complex E, p).

It’s also equivalent to answering the question: Given two events, what

is the region in mass space that is compatible with both events?

We extend to N events and ask what region is consistent with all

events. (no resolution, detector simulation, or combinatorics here)







Graphical Algorithm
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Fixing two of the masses, we scan in the third mass. Unfortunately an
analytic expression for these curves is probably intractable to derive.

For a large number of events, we want the largest MN compatible
with the event. Large pT cuts off the zero mass solution, but the
high mass solution converges to the correct value faster, and our
understanding of pT in hadron colliders is poor. (e.g. MT used to
measure MW is designed to be pT insensitive)

But! Features are simple. We fit a line to the “corner” to determine
its location.



Iterate
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Iterate in each mass, fitting for each mass successively.

This procedure “walks up” the mass space, increasing the over mass

scale, and is not convergent. (e.g. there still exists a solution at

MN = ∞ for most events)

But! We have not yet used the total number of events fit.



MN vs. Number of Events
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3D projections with no smearing

(mY , mX , mN) = (180.8,147.1,85.2)
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3D projections with smearing

(mY , mX , mN) = (246.6,128.4,85.3)
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Fit Results

In the ideal case (no resolution or combinatorics), given inputs:

(mY , mX , mN) = (246.6,128.4,85.3)

we reconstruct

(mY , mX , mN) = (251.5,130.7,85.4).

For different sets of 1000 events, the fitted masses vary by 2-3 GeV.

We smear momenta using ATLFAST’s muon resolution, and a miss-

ing momentum resolution given by a gaussian with width 18 GeV.

When resolution is included, the final fit point is taken as where the

slope in MN vs. # events changes. (not peak)



Some Comments

Anything you do generally results in a biased, inconsistent estimator.

But, due to detector resolution, all or estimators are generally biased

and inconsistent anyway, and we know how to deal with this. (e.g.

the “template” methods used in MW extraction at the Tevatron) We

have determined the mass within 1 GeV, but this must be corrected

by the systematic bias of the method itself.

There are many possible estimators. I have worked on at least 4. We

have shown that MN can be determined. The full probability density

(e.g. Matrix Element Method) does have sensitivity to the overall

mass scale.

This should be used as a crude tool to determine the mass scale and

kinematic structure, with relatively low statistics.

A secondary analysis should enumerate different spin hypothesis for

the various particles, and use a full Matrix Element (rather than

narrow width).



Why does this work?

What is cutting off the high-mass solutions and what is cutting off

the zero mass solutions?

High Mass: Some events have “holes”. e.g. a region in the middle

of the mass space that is disallowed. When intersected with a non-

hole event, a very small volume remains. The allowed volume is given

by an 8th order polynomial in mass. An 8th order polynomial can be

genus-1. (e.g. torus-like) Two events can also go to infinite mass in

different directions.

Low Mass: Events with sizeable pT can cut off the 0 mass solution.

But, reasonable pT spectra still have the high-MN solution closer to

the true value than the low MN cutoff. If we maximize dP
dMN

in a one

missing particle process, this gives an estimator for MN that is simply

|pT |.



Solving the Equations: High Mass Cutoff

These ellipses can also be written using the vector xi = (E1, E2,1) as

A = xif
ijxj = 0, B = xig

ijxj

using the tensors

f ij =

 a11 a12 a1(m)
a12 a22 a2(m)

a1(m) a2(m) a0(m, m2)

 gij =

 b11 b12 b1(m)
b12 b22 b2(m)

b1(m) b2(m) b0(m, m2)


For determining masses, we only care about whether a solution exists,

not the actual values of E1, E2. Therefore, without loss of generality,

we are free to rotate, translate, and scale the vector xi.

f ij =

 1 0 0
0 1 0
0 0 −r2(m, m2)

 ,
x2 + y2 − r2(m, m2) = 0

(x−x0(m))2

a2 + (y−y0(m))2

b2
−R2(m, m2) = 0

gij =

 1/a2 0 −x0(m)/a2

0 1/b2 −y0(m)/b2

−x0(m)/a2 −y0(m)/b2 −R2(m, m2) + x0(m)2/a2 + y0(m)2/b2





J. Random Event





Low Mass Cutoff
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Conclusions

We have shown that the overall mass scale (and therefore, the mag-

nitude of all intermediate masses) can be determined at a hadron

collider, for a tt-dilepton-like topology at the O(1GeV) level with

O(1000) events.

This can be extended to any process with 2 or more visible particles

and 2 missing particles.

There are many possible techniques that follow from intersections

of subsets, maximizing the probability density for a single event, the

“centroid” of the allowed region, or using different fit functions in

the technique just presented. Which is optimal?

A matrix element method does have sensitivity to the overall mass

scale.


