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Mass-Energy Budget of the Universe

s The energy density of the universe
is for the most part unidentified
+ Baryons: ~4%
+ Dark Matter: ~25%
+ Dark Energy: ~70%

s Whatis all of this?

s These densities are the
best measurements of
physics beyond the
Standard Model

+ What exactly is
being measured?
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Hypothesis: The Dark Matter Consists
of Weakly Interacting Massive Particles

* WIMPs with masses 100 GeV - 1 TeV and typical couplings
have annihilation cross sections of order 1 pb
+ this is exactly what is required to give the measured relic
abundance with a thermal freeze-out in the hot big bang model

s The weak scale is thus naively related to dark matter
+ a compelling coincidence!

+ How can we test this hypothesis?
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To Solve the Dark Matter Problem
We Must Do Three Things

> 1.) Demonstrate that the dark matter in the
galaxy is made of particles

¥

2.) Create dark matter candidates in the
controlled environments of accelerators

s 3.) Demonstrate that these two are the same

L&

We need astrophysical observations and
accelerator experiments
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Alternative Scenarios for WIMPs
(which might be observed at the LHC)

s The WIMP is all / part / none of the dark matter

* The WIMP is stable / unstable to a superWIMP

* The underlying physics is SUSY / extra dimensions / TBD

s Cosmology was standard / exotic to temperatures of 100 GeV

s The dark matter halo of the galaxy is clumpy / smooth

s The velocity distribution of dark matter is smooth / has features

s+ We need the data that will distinguish all of these possibilities.

Edward A. Baltz (KIPAC, SLAC) The Hunt for Dark Matter @ Fermilab May 10%*, 2007



Direct Detection of Dark Matter

s Nuclear recoils
+ ~50 keV deposited

+ many techniques
4 semiconductors
a4 scintillators
4 liquid noble gases
4 bubble chambers

a TPCs A=

s+ Most measure only the Jo=ZH R
recoil energy Bl

+ Recoil direction is more
difficult, but possible

CDMS fridge + icebox @ Soudan mine
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Indirect Detection of Dark Matter

Indirect detection
+ annihilations in galactic halo

+ energetic particles
a photons (gamma rays)
a4 antiprotons, antideuterons
4 positrons

Gamma rays, incl. lines!
+ satellites (EGRET, GLAST
+ ACTs (HESS, VERITAS, MAGIC)

4 follow-up of GLAST sources?
Antiprotons, positrons
+ PAMELA, AMS, BESS
Neutrinos
+ AMANDA, IceCube, ANTARES

[

[

[

GLAST satellite
with schematic of
LAT instrument

[

electron-positron pair
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Dark Matter in the Gamma Ray Sky

Milky Way Halo simulated by
Taylor & Babul (2005)

All-sky map of gamma ray emission
from dark matter annihilations

dark matter substructure exhibits:
1. characteristic y-ray spectrum
2. spatially extended emission




Substructure In the Galactic Halo

s Spectrum of halo sub-
structure like MA-2

s Density profiles are 1/r,
giving “surface brightness”
proportional to 1/r

+ With a size of 1 degree,
resolved by GLAST!

s+ Detectable objects can be
low-mass (1026 M_sun),
tidally stripped (100 pc) and
nearby (few kpc)

number of clumps

detection significance ¢
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Gamma Ray Spectrum from
Dark Matter Annihilations

s Hadronization produces P R bS]t
pions, decaying into o
high energy photons e

s Bright GLAST sources 1% 1

distinguishable from
astrophysical objects

+ Gamma-ray pulsars are
the most troublesome

+ 25% mass measurement -
at 100 GeV possible M =100 GeV Mo

+ Gamma ray spectrum | — —- proton slope —1.9
AND spatial extent
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Positrons From Annihilations

s Spectral features can survive
galactic effects (diffusion, Cmodel LCC2 T 'gommas — ]
synchrotron, IC) 10 b P 7oA
+ shelf from W, Z decay :
+ lines possible in KK models
s Peak in positron spectrum is
difficult to arrange by
astrophysical means

s HEAT reports an excess of
positrons around 10 GeV
+ annihilation component?
s PAMELA satellite
+ launched last June
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Current and Near-Future
Cosmic Ray Positron Data

SUSY+bkg. fit
SUSY component
bkg. component
bkg. only fit

10!

positron fraction e*/(e*+e-)

= HEAT 2000
= HEAT 94+95
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The HEAT positron excess
requires SUSY signal
enhancement of ~ 100x
(Baltz, Edsjo 99, BEFG 02)

PAMELA will sort this out

Smaller signals will be accessible
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Laboratory Creation of Dark Matter

» Large Hadron Collider

+ find particles up to 2+ TeV in
jets+missing energy events

+ late 2007!
s International Linear Collider
+ mass reach not as high
+ precision measurements
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Choose a SUSY model
(LCC2) and Explore
Consequences

+ “Focus point” region: gauginos, higgsinos are light,
sfermions are all inaccessible to any collider

+ LHC discovers most gauginos + Higgsinos, one Higgs boson
4 Dark matter candidate mass measured at 10% level

+ |ILC discovers the remaining gauginos + Higgsinos, measures
various Ccross sections

s Relic density prediction has 10% accuracy with ILC TeV
+ CMB measurement (Planck, 0.5%) is doing collider physics!
s Direct detection is dominated by exchange of light Higgs
+ The usually dominant heavy Higgs is so heavy that it's irrelevant
+ Hint of a signal possible with current CDMS setup
+ Annihilation cross section is large - dominated by W pairs
+ Promising for gamma ray experiments
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LCC2: LHC

bino
(correct solution)
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A Different Model: LCC3

» "“Coannihilation” region: light stau very close to neutralino

+ LHC discovers some gauginos and light sfermions, multiple
Higgs bosons, stau may be possible

+ |ILC discovers chargino, light stau, remaining charged sleptons
+ Relic density estimate has ~20% accuracy with ILC TeV
+ Direct detection is dominated by heavy Higgs
s Annihilation cross section is moderate — dominated by b bar
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The Situation in 2012 for LCC2

s LHC has seen missing energy events, and measured masses for
new particles including a dark matter candidate

+ What is the underlying theory? Spins are difficult to measure.
+ The standard cosmology chooses the SUSY bino solution

s GLAST has obtained a 4+ year sky survey, and has observed
anomalous gamma ray sources

+ Mass is in the same range
+ Evidence for dark matter clustering?

+ Direct detection experiments have detected ~70 events,
measured mass to 30%

+ Mass is consistent with LHC
+ Measure the local dark matter density, assuming the SUSY solution
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Mapping the Dark Matter in the Galaxy

> Local flux of dark matter particles can be determined from
the direct detection rate IF collider data can predict the
elastic scattering cross section

> Dark matter density squared along a line of sight can be
determined from gamma ray flux IF collider data can predict
the annihilation cross section

*» These can be done without any astrophysical assumptions
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Local Flux of Neutralinos
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input data: collider + number of counts in direct detection experiment

determine WIMP flux with no astrophysical / cosmological assumptions

Edward A. Baltz (KIPAC, SLAC)

The Hunt for Dark Matter @ Fermilab

May 10%*, 2007



Dark Matter Annihilation Rate
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Why Do We Need the ILC to
Understand Dark Matter?

s Dark matter physics depends on small parameters

+ wino / higgsino mixing angle of bino-like neutralino appears in
direct detection cross section and branching ratio to W's

s+ Heavy Higgs mass scale
+ resonant annihilation region (the “funnel”) can be important
+ direct detection cross section

s Accurate sparticle masses and mass splittings
+ overall mass scale, and splittings with e.g. stau, chargino

s> Tan Beta appears everywhere
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Summary

> Solving the dark matter problem requires detecting dark matter in
the galaxy, studying its properties in the laboratory, and being
able to make the connection between the two

> Experimental approaches are complementary:
accelerators, direct detection, indirect detection

+ We need LHC and ILC and CDMS and GLAST
+ Taken together, a consistent picture may emerge

> We can learn about fundamental physics in astrophysical
settings, and learn about our galaxy at high-energy colliders
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