Determining the WIMP mass from direct detection experiments

> Anne Green University of Nottingham

★ Why?
★ How?
★ Results
★ Caveats/validity of assumptions.....

based on: hep-ph/0703217

Would:

- help us work out what WIMPs are
- probe parameter space of particle physics models (supersymmetry, universal extra dimensions....)
 - provide complementary information to collider experiments

Baltz, Battaglia, Peskin & Wiszansky benchmark point in stau coannihilation region, LHC v. SuperCDMS c.f. also Hooper and Taylor. How?

General principle:

Differential event rate depends on the WIMP mass:

$$\frac{dR}{dE}(E) = \frac{\sigma_p \rho_{\chi}}{2\mu_{p\chi} m_{\chi}} A^2 F^2(E) \langle \int_{v_{min}}^{\infty} \frac{f_v(t)}{v} dv \rangle$$

WIMP mass (top to bottom) 25, 50, 100, 250, 500 & 1000 GeV

 $v_{min} = \left(\frac{Em_A}{2\mu_{A\gamma}}\right)^{1/2}$

[c.f. Lewin & Smith]

Neglecting the Earth's orbit and the Galactic escape speed:

$$\frac{dR}{dE}(E) = \left(\frac{dR}{dE}\right)_0 F^2(E) \exp\left(-\frac{E}{E_R}\right)$$

Including (and averaging over) the Earth's orbit and the Galactic escape speed:

$$\frac{dR}{dE}(E) \approx c_1 \left(\frac{dR}{dE}\right)_0 F^2(E) \exp\left(-\frac{E}{c_2 E_R}\right)$$

c₁ and c₂ fitting parameters of order unity (exact values depend on target mass, energy threshold, escape velocity)

Main upshot:

Dependence of spectrum on WIMP mass strong (weak) for light (heavy) WIMP [compared with target mass].

Footnote: Could in principle measure mass from energy at which annual modulation changes phase [c.f. Lewis & Freese], but this would require lots of data.

Application to MC `data':

Consider range of input WIMP masses: 25, 50, 100, 250 & 500 GeV.

And (efficiency weighted) detector exposures $3x10^2$, $3x10^3$, $3x10^4$ and $3x10^5$ kg day. (last 3 exposures correspond, roughly to 3 proposed phases of SuperCDMS [25kg, 150kg and 1 ton] taking data for a year with detection efficiency ~0.5)

Assumptions:

• Ge detector, with E_{th} =10 keV, zero background and perfect energy resolution

detection efficiency is independent of energy

• form factor has Helm form (with parameters values as advocated by Lewin and Smith)

- $\sigma = 10^{-7}$ pb (just below current CDMS exclusion limits)
- local WIMP speed distribution is known (Maxwellian with $v_c=220$ km/s)
- local WIMP density is 0.3 GeV/cm³

These are, generally, optimistic assumptions results are for best case scenario

For each WIMP mass-exposure combination, simulate 10⁴ experiments.

For each experiment:

- i) draw number of events observed from Poisson distribution
- ii) draw this number of events from input spectrum

iii) find best fit mass and cross-section by maximising extended likelihood function:

$$L = \frac{\lambda^{N_{expt}} \exp(-\lambda)}{N_{expt}} \prod_{i=1}^{N_{expt}} f(E_i)$$

 λ Expected number of events N_{expt} Observed number of events

f(E) Normalised event rate E_i Energy of i-th event

Plot distribution of best fit masses and cross-sections.

 $m_{\chi} = 100 \text{ GeV}$

 $m_{\chi} = 25 \text{ GeV}$

 $m_{\chi} = 50 \text{ GeV}$

 $m_{\chi} = 500 \text{ GeV}$

Caveats/validity of assumptions

WIMP speed distribution

Varying v_c in observationally allowed range: 220 +/- 20 km/s:

Non-standard (but still smooth) halo models:

Evans, Carollo & de Zeeuw logarithmic ellipsoidal model, triaxial and anisotropic

 $m_{\chi} = 100 \text{ GeV} \quad 3 \times 10^5 \text{ kg day}$

IF WIMP distribution is smooth, mean differential event rate depends only weakly on WIMP speed dist, therefore systematic error (from lack of knowledge of true WIMP dist) small.

BUT WIMP distribution on sub-millipc scales probed by direct detection experiments may not be smooth. [e.g. Moore et al., Stiff & Widrow]

Local WIMP density

- For smooth halo of models, factor of ~3 uncertainty [Gates, Gyuk & Turner; Bergström, Ullio & Buckley] in local WIMP density leads to similar uncertainty in cross-section.
- Bigger issue if small scale WIMP dist not smooth.

Zero background

Validity??? Non-zero background could in principle be included in maximum likelihood analysis, also fit for background rate (and possibly shape of background spectrum), [c.f. Krauss et al.] measurements of WIMP mass and cross-section would be degraded.

<u>Other</u>

Uncertainty in form factor and finite resolution (if FWHM ~ 1 keV) likely to be sub-dominant compared to above issues.

Spin dependent interactions and/or different interactions with proton and neutron.....[c.f. Bourjaily & Kane]

Conclusions

Tirect detection energy spectrum depends on the WIMP mass, strongly for light (compared with target) WIMPs, weakly for heavy WIMPs.

F optimistic assumptions about the WIMP properties ($\sigma = 10^{-7}$ pb, *just below current CDMS exclusion limits*, smooth WIMP distribution on sub-milli-pc scales) and detector set-up (zero background) are valid, with exposures of $3x10^3$, $3x10^4$, $3x10^5$ kg day (corresponding, roughly, to the 3 proposed phases of SuperCDMS) it will be possible to measure the mass of a light WIMP with an accuracy of ~25%, 15% and 2.5% respectively.

★ If the WIMP is heavy even with optimistic assumptions and large exposures it will only be possible to place a lower limit on its mass.

★ If the WIMP mass was accurately measured by other means could invert the process and reconstruct the local WIMP velocity distribution [Drees & Shan] but need ~1000s of events to do this with reasonable accuracy.