

Simulations of dynamical friction including spatially-varying magnetic fields

David Bruhwiler

Brookhaven National Lab:
Alexei Fedotov, Vladimir Litvinenko & Ilan Ben-Zvi *Tech-X Corp.:*Richard Busby, Dan Abell, George Bell,
Peter Messmer, Seth Veitzer & John Cary

COOL 05 Workshop Galena, IL September 21, 2005

Tech-X Corporation

5621 Arapahoe Ave., Suite A Boulder, Colorado 80303 http://www.txcorp.com Work supported by US DOE, Office of NP, SBIR program, contract # **DE-FG03-01ER83313**

Motivation

- Parameters for RHIC II cooler are unprecedented
 - see I. Ben-Zvi et al., Proc. COOL 03 Workshop (2003).
 - friction forces must be understood to within a factor of ~ 2
- There's a need for high-fidelity simulations
 - We are using the VORPAL code
 - C. Nieter and J.R. Cary, Journal of Computational Physics (2004)
 - http://www-beams.colorado.edu/vorpal/
- Goals of the simulations
 - Resolve differences in theory, asymptotics, parametric models
 - Understand magnetization in limit of small Coulomb logarithm
 - Quantify the effect of magnetic field errors
- Numerical approach:
 - use O(N²) algorithm from astrophysical dynamics community
 - 4th-order predictor-corrector with aggressive variation of time step
 - accurately resolves close binary collisions

4th-Order Predictor/Corrector Hermite Algorithm

- Algorithm developed and used extensively by galactic dynamics community
 - J. Makino, The Astrophysical Journal **369**, 200 (1991)
 - J. Makino & S. Aarseth, Publ. Astron. Soc. Japan 44, 141 (1992)

Predictor step:

$$\mathbf{v}_{p,j} = \frac{1}{2} \left(t - t_j \right) \dot{\mathbf{a}}_j + \left(t - t_j \right) \mathbf{a}_j + \mathbf{v}_j$$

$$\mathbf{x}_{p,j} = \frac{1}{6} \left(t - t_j \right) \dot{\mathbf{a}}_j + \frac{1}{2} \left(t - t_j \right) \mathbf{a}_j + \left(t - t_j \right) \mathbf{v}_j + \mathbf{x}_j$$
where

$$\mathbf{a}_{i} = \frac{q_{i}}{m_{i}} \mathbf{v}_{i} \times \mathbf{B} + \frac{q_{i}}{4\pi\varepsilon_{0}m_{i}} \sum_{j} \frac{q_{j}\mathbf{r}_{ij}}{\left(\mathbf{r}_{ij}^{2} + \mathbf{r}_{c}^{2}\right)^{3/2}} \qquad \mathbf{r}_{ij} = \mathbf{x}_{p,j} - \mathbf{x}_{p,i}$$

$$\mathbf{a}_{i} = \frac{q_{i}}{m_{i}} \mathbf{a}_{i} \times \mathbf{B} + \frac{q_{i}}{4\pi\varepsilon_{0}m_{i}} \sum_{j} q_{j} \left[\frac{\mathbf{v}_{ij}}{\left(\mathbf{r}_{ij}^{2} + \mathbf{r}_{c}^{2}\right)^{3/2}} + \frac{3\left(\mathbf{v}_{ij} \cdot \mathbf{r}_{ij}\right)\mathbf{r}_{ij}}{\left(\mathbf{r}_{ij}^{2} + \mathbf{r}_{c}^{2}\right)^{3/2}} \right] \qquad \mathbf{v}_{ij} = \mathbf{v}_{p,j} - \mathbf{v}_{p,i}$$

$$\mathbf{v}_{ij} = \mathbf{v}_{p,j} - \mathbf{v}_{p,i}$$

$$\mathbf{v}_{ij} = \mathbf{v}_{p,j} - \mathbf{v}_{p,i}$$

$$\mathbf{v}_{ij} = \mathbf{v}_{p,j} - \mathbf{v}_{p,i}$$

Hermite Algorithm – including a Magnetic Field

- The corrector step: $\mathbf{x}_{i}(t_{i} + \Delta t_{i}) = \mathbf{x}_{p,i} + \frac{1}{24}\Delta t_{i}^{4}\mathbf{a}_{0,i}^{(2)} + \frac{1}{120}\Delta t_{i}^{5}\mathbf{a}_{0,i}^{(3)}$ $\mathbf{v}_{i}(t_{i} + \Delta t_{i}) = \mathbf{v}_{p,i} + \frac{1}{6}\Delta t_{i}^{3}\mathbf{a}_{0,i}^{(2)} + \frac{1}{24}\Delta t_{i}^{4}\mathbf{a}_{0,i}^{(3)}$
 - where $\mathbf{a}_{0,i}^{(2)}$ and $\mathbf{a}_{0,i}^{(3)}$ are linear functions of $\mathbf{a}(t)$ and $\dot{\mathbf{a}}(t)$ evaluated at times t_i and $t_i + \Delta t_i$
- Adding B-field breaks 4th-order scaling, unless
 - Lab-frame B is purely longitudinal, constant in time
 - $\mathbf{v} \mathbf{x} \mathbf{B}$ force is evaluated again at the predicted positions
 - magnetic term in velocity correction (far right term above):
 - is split into self-field & magnetic terms • the coefficient in front of $\mathbf{a}_{self-field,is}^{(3)}$ changed from the self to $\mathbf{a}_{magnetic,i}^{(3)}$

Initial Study of Magnetic Field Errors – Motivation

- The effect of magnetic field errors in a solenoid on the dynamical velocity drag (i.e. friction) of an ion in an electron cooler is not well understood
 - The parametric model of Parkhomchuk treats field errors as an effective transverse rms velocity of the electron Larmor circles
 - Contribution appears in same place as $V_{e,rms,||}$
 - In the absence of an explicit model, field errors have been treated as an effective increase in $V_{e,\text{rms},\parallel}$
- Our primary interest is the cooler for RHIC II
 - We consider the CELSIUS ring here, to take advantage of recent experiments
 - We consider two very different models for the errors

Magnetic field errors – "Model 1"

A sum of sinusoidal terms (lab frame)

$$B_{x} = \sum_{i} b_{i} \frac{k_{x,i}}{k_{z,i}} \exp(k_{x,i}x) \exp(k_{y,i}y) \sin(k_{z,i}z + \varphi_{z,i})$$

$$B_{y} = \sum_{i} b_{i} \frac{k_{y,i}}{k_{z,i}} \exp(k_{x,i}x) \exp(k_{y,i}y) \sin(k_{z,i}z + \varphi_{z,i})$$

$$B_{z} = B_{0} + \sum_{i} b_{i} \exp(k_{x,i}x) \exp(k_{y,i}y) \cos(k_{z,i}z + \varphi_{z,i})$$

$$k_{z,i}^2 = k_{x,i}^2 + k_{y,i}^2$$
 $\lambda_i = 2\pi / k_{z,i}$

- a more general form of the equations is allowed
- we assume $b_i << B_0$ for all *i*
- appropriate choices for b_i, λ_i , etc. are not yet clear
- here, we consider a single component

Magnetic field errors - "Model 2"

A sum of piece-wise constant "tilts" (lab frame)

$$B_{x} = \sum_{i} b_{x,i} H(z - z_{x,i}) H(z_{x,i+1} - z)$$
$$B_{y} = \sum_{i} b_{y,i} H(z - z_{y,i}) H(z_{y,i+1} - z)$$

 $B_z = B_0$

- -H(x) is the unit Heaviside function
- we assume b_{ix} , $b_{iy} < B_0$ for all i
- small abuse of Maxwell's eqn.'s at discontinuities
- parameters taken from design report
 - M. Sedlacek et al., "Design and Construction of the CELSIUS Electron Cooler," http://preprints.cern.ch/cgi-bin/setlink? base=cernrep&categ=Yellow_Report&id=94-03
 - amplitude of tilts (highly variable) is ~1.e-03
 - length of segments (highly variable) is ~20 cm

Fields are Lorentz-transformed to beam frame

VORPAL cooling sim.'s are in the beam frame $B_z' = B_z(x', y', \gamma\beta ct')$

 $B_{x}' = \gamma B_{x}(x', y', \gamma \beta ct') \quad B_{y}' = \gamma B_{y}(x', y', \gamma \beta ct')$

$$E_{x}' = -\beta c B_{y}' \qquad E_{y}' = \beta c B_{x}' \qquad E_{z}' = 0$$

- E fields are dominant for "relativistic" coolers

· because electrons are non-relativistic in the beam frame

• not strictly true for CELSIUS, for which β ~0.3

Basic Parameter set with 5 variations

Symbol	Meaning	Value	Units
B_0	solenoid field	0.1	Т
L _{sol}	solenoid length	2.5	m
β	proton bunch velocity / c	0.308	
$ au_{lab}$	interaction time (lab frame)	2.7x10 ⁻⁸	S
τ_{beam}	interact. time (beam frame)	2.6x10 ⁻⁸	S
Δt	largest time step	2.6×10^{-12}	S
dt _{min}	smallest time step	8.0x10 ⁻¹⁴	S
ω _{pe}	e- plasma frequency	4.1×10^8	rad/s
$\Omega_{ m L}$	e- Larmor frequency	1.8×10^{10}	rad/s
r _L	e- Larmor (gyro-) radius	7.9x10 ⁻⁶	m
L _{x,y,z}	sim. domain dimensions	6.0x10 ⁻⁴	m
n _e	e- number density	5.4×10^{13}	m ⁻³
N _e	# of simulated e-'s	1.2×10^{3}	
$\Delta_{e,\perp}$	transverse rms e- velocity	1.4×10^{5}	m/s
$\Delta_{e,\parallel}$	long. rms e- velocity	3.0×10^3	m/s
$\Delta_{\mathrm{eff},\parallel}$	effective long. rms e- vel.	9.0×10^3	m/s

We consider 5 separate cases – 2 with field errors & 3 without $V_{ion,\parallel} = 10,000 \text{ m/s}$ $V_{ion,\perp} = 10,000 \text{ m/s}$

"cld" $-\Delta_{e,\parallel} = 3,000$ (no errors) "wrm" $-\Delta_{e,\parallel} = 9,000$ (no errors) "hot" $-\Delta_{e,\parallel} = 18,000$ (no errors)

"sin" $-\Delta_{e,\parallel} = 3,000 \pmod{1}$ "err" $-\Delta_{e,\parallel} = 3,000 \pmod{2}$

COOL 05 – September 21, 2005

Diffusive dynamics can obscure friction/drag

- For a single pass through the cooler
 - Diffusive velocity kicks are larger than velocity drag
 - Consistent with theory
- For sufficiently large $\Delta_{e,\parallel}$
 - numerical trick of e-/e+ pairs can suppress diffusion
 - not valid for CELSIUS parameters
- Only remaining tactic is to generate 100's of trajectories
 - Central Limit Theorem states that mean velocity drag is drawn from a Gaussian distribution, with rms reduced by N_{traj}^{1/2} as compared to the rms spread of the original distribution

– Hence, error bars are +/- 1 rms / $N_{trai}^{1/2}$

- Not practical to routinely generate 100's or 1000's of trajectories "by hand"
 - run 8 trajectories simultaneously
 - use "task farming" approach to automate many runs

Error models yield similar results –

- Longitudinal velocity drag is significantly reduced
 - in agreement with parametric increase of $\Delta_{\rm rms, ||}$
- Transverse velocity drag is less affected

 NOT consistent with parametric increase of

р.

Wiggler approach to RHIC cooler – Motivation

- Why look for alternatives to solenoid design?
 - solenoid design & beam requirements are challenging
 - accelerator physics group of the RHIC electron cooling project is now considering a wiggler-based approach
- Advantages of a wiggler
 - provides focussing & suppresses recombination
 - Modest fields (~10 Gauss) effectively reduce recombination via 'wiggle' motion of electrons:
 - • $\rho_w = \frac{\Omega_{gyro}}{k^2} \sim 1.4x10^{-3} \lambda_w^2 [m] B_w [G] / \gamma$ - e- bunch is easier: less charge wand un-magnetized
- What's the effect of 'wiggle' motion on cooling?
 - increase minimum impact parameter of Coulomb
 logarithm: ...needs to be simulated

$$\rho_{\min} \otimes \rho_w$$

Wiggler fields in the beam frame

- Tests in absence of wiggler field look promising

 unmagnetized dynamical friction agrees with theory
 numerical e-/e+ trick suppresses diffusion by 4x
 - D. Bruhwiler et al., Proc. 33rd ICFA Beam Dynamics Workshop (2004)
- Wiggler field has following form (lab frame)

$$B_x = B_w \cosh(k_w x) \cos(k_w z)$$

$$B_y = B_w \cosh(k_w y) \sin(k_w z)$$

- $B_z = B_w \sinh(k_w y) \cos(k_w z) B_w \sinh(k_w x) \sin(k_w z)$
- Lorentz transformation to beam frame
 - yields circularly-polarized EM wave
 - relatively strong, rapidly-oscillating external fields
 - not well-suited for Hermite algorithm; need operator splitting

Operator Splitting Approach

- Numerical technique used for ODE's & PDE's
- Consider Lorentz force equations

$$\dot{\mathbf{x}} = \mathbf{v}$$
 $\dot{\mathbf{v}} = \frac{q}{m} \mathbf{E}_{Coulomb} + \frac{q}{m} (\mathbf{E}_{ext} + \mathbf{v} \times \mathbf{B}_{ext})$

- Robust 2nd-order 'Boris' uses operator splitting

 J. Boris, Proc. Conf. Num. Sim. Plasmas, (1970), p. 3.
- Add external **E**, **B** fields via operator splitting

- Hermite algorithm: drift + coulomb fields

- Boris 'kick': all external E, B fields
- Benchmark w/ pure Hermite alg. for constant B_{\parallel}

Operator splitting is implemented for 'reduced' model

- Use analytical two-body theory for ion/e- pairs
 - handle each pair separately in center-of-mass frame
 - calculate initial orbit parameters in relevant plane
 - advance dynamics for a fixed time step
 - · electron's new position and velocity are known
 - changes to ion position/velocity are small perturbations
 - total ion shift is sum of individual changes
- Initial algorithm is in place and partially tested
 - Speed and stability need to be improved
 - Initial comparisons with Hermite algorithm look good
 - Value of operator-splitting approach is verified
 - Hermite implementation in VORPAL will be modified so it can also be used with operator splitting

Semi-analytic 'Reduced' Model for Binary Collisions

- necessary rotations (yaw, pitch, roll) are complete
- transformations are messy, but straightforward
- "initial" positions & velocities obtained in this plane
- Then standard orbital parameters are calculated

Hermite algorithm & Reduced Model compare well for RHIC parameters w/ 5 Tesla B-field

• Agreement validates reduced model & operator splitting approach

Results for initial ion speeds: Vx=0.0 m/s; Vz=3.0E+05 m/s; 800 trajectories

	Hermite	Binary Collision
<delta_vz_ion> [m/s]</delta_vz_ion>	-0.067	-0.066
dVz_rms/sqrt(# traj)	0.007	0.005
Time steps / TSPG*	3978 / 70	576 / 10
Processor - min/run	145	25

Results for initial ion speeds: Vx=2.83E+05 m/s; Vz=1.0E+05 m/s; 800 trajectories

	Hermite	Binary Collision
<delta_vx_ion> [m/s]</delta_vx_ion>	-0.033	-0.043
dVx_rms/sqrt(# traj)	0.008	0.003
<delta_vz_ion> [m/s]</delta_vz_ion>	-0.068	-0.062
dVz_rms/sqrt(# traj)	0.007	0.004
Time steps / TSPG*	3978 / 70	1017 / 20
Processor - min/run	144	44

* TSPG = Time steps per gyroperiod

Acknowledgements

We thank A. Burov, P. Schoessow, P. Stoltz, V. Yakimenko & the Accelerator Physics Group of the RHIC Electron Cooling Project for many helpful discussions. Discussions with A.K. Jain regarding solenoid field errors were especially helpful.

Work at Tech-X Corp. was supported by the U.S. Dept. of Energy under grants DE-FG03-01ER83313 and DE-FG02-04ER84094. We used resources of NERSC.