Ultra Cold Electron Beams for the Heidelberg TSR and CSR

Dmitry A. Orlov[#]

M. Lestinsky #, F. Sprenger #, D. Schwalm #, A. S. Terekhov* and A. Wolf #

[#] Max-Planck-Institut für Kernphysik, Heidelberg ^{*} Institute of Semiconductor Physics, Novosibirsk

Cold electron target for TSR

- Electron beam formation
- □ Cold electrons from cryogenic photocathodes
- **Experimental: target, photocathode setup**
- □ First results with photocathode-driven target
- Electron cooler with cryogenic photocathodes for low-energy electrostatic storage rings

TSR electron target - concept

Electron beam formation

C = 1.9 - fast acceleration C < 1.9 - slow (adiabatic) acceleration

$$kT_{\parallel} = 0.1 \text{ meV}$$

$$kT_{\parallel}\ll kT_{\perp}$$

Magnetic adiabatic expansion

adiabatic invariant: $E_{\perp}/B=const.$

Thermocathode $kT_{\rm C}$ = 110-120 meV α = 20 kT_{\perp} = 5-6 meV α = 90 kT_{\perp} = 2 meV (CRYRING)

Photocathode $kT_{\rm C} = 10 \text{ meV}$ $\alpha = 20 \qquad kT_{\perp} = 0.5 \text{ meV}$

Electron-ion collision resolution

Electron beam from photocathode

Photocathode principle

Thermocathode principle

Strong energy and impulse relaxations enlarge electron energy spreads in vacuum

Fully activated cathode: QY= 20-30%

Electron beam from photocathode

Photocathode principle

Suppression

Strong energy and impulse relaxations enlarge electron energy spreads in vacuum

Fully activated cathode: QY= 20-30%

Energy spreads about kT

QY_{eff}=1 %

Laser power (800 nm) for 1 mA: < 1 W Efficient heat transfer from the cathode

D. A. Orlov et al., Appl. Phys. Lett. 78 (2001) 2721

TSR electron target section - overview

Photocathode gun

Laser illumination up to 1 W Temperature rise 15-20 K/W at 90 K

U. Weigel et al., NIM A 536 (2005) 323

Photocathode performance at the TSR target

Lifetime data

Lifetimes 7-15 hours at 0.15-0.2 mA

□ Non-stop operation

□ Closed cycle of operation

$$\Box k_B T_{\perp} = 0.5 \text{ meV} k_B T_{\parallel} = 0.02 \text{ meV}$$

H. Buhr et al., work in progress D. A. Orlov et al., J. Phys.: Conf. Ser. 4 (2005) 290.

Photocathode performance at the target

Ultra-low energy electron cooler for the Heidelberg CSR

lon mass [amu]	lon energy [keV]	Electron energy [eV]	Bmax [Gauss]
1	10	5.5	15
1	300	165	60
3	300	54	100
32	300	5.1	>300
100	300	1.6	>300

Ultra-low energy electron cooling

$$P = 2\mu A / U^{3/2} \qquad k_B T_C \cong 10 \ meV$$

lon mass [amu]	lon energy [keV]	Electron energy [eV]	Electron current [mA]	Electron density [10 ⁶ cm ⁻³]	Cooling time (cold beam) [s]	Cooling time (hot beam) [s]
1	300	165	4.2	20	0.005	0.05
1	10	5.5	0.02	0.7	0.16	1.6
3	300	54	0.8	6.4	0.5	0.5
32	300	5.1	0.02	0.6	5	50
100	300	1.6	0.004	0.2	50	500

 $\begin{array}{c} k_B T_e = 0.5 \ {\rm meV} \\ L_C = 3.3 \\ \eta_C = 0.028 \\ S_{el} = 0.1 \ S_{ion} \ (\ {\rm hot\ beam\ }) \end{array}$

$$\tau_{cool} = C_0 \frac{M_{ion}}{n_e \cdot Z^2 \cdot L_C} \cdot \left(\frac{k_B T_e}{M_e c^2}\right)^{3/2}$$

~ / ~

Summary and outlook

□ Cold photocathode source works close to design parameters

Electron target + photocathode: Strong gain in energy resolution and accuracy at meV collision energy

□ Work to improve currents, lifetimes and energy spreads in progress

Cold photocathode source beneficial for low-energy electron cooling (CSR, low-energy ion beams)

Atomic hydrogen treatment

Hot capillary source

Photocathode section - overview

Photocathode setup at the TSR

